• Title/Summary/Keyword: D-optimal Method

Search Result 1,494, Processing Time 0.035 seconds

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA Model 후미의 저저항 최적 설계)

  • Hur Nahmkeon;Kim Wook
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Drag reduction on vehicles are the main concern for the body shape designers in order to lower the fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can be minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain an optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having the lowest drag coefficient which is about 6% lower than that of the original shape has been successfully obtained within number of iterations of tile optimal design loop.

  • PDF

A New Algorithm to Calculate the Optimal Inclination Angle for Filling of Plunge-milling

  • Tawfik, Hamdy
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.193-198
    • /
    • 2006
  • Plunge milling is the fastest way to mill away large volumes of metal in the axial direction. The residual volume (inaccessible volume by the plungers) is minimized when selecting a specific direction of filling. This direction is known as the optimal inclination angle for filling of the plunged area. This paper proposes a new algorithm to calculate the optimal inclination angle of filling and to fill the plunged area with multi-plungers sizes. The proposed algorithm uses the geometry of the 2D area of the shape that being cutting to estimate the optimal inclination angle of filling. It is found that, the optimal inclination angle for filling of the plunged area is the same direction as the longer width of the equivalent convex polygon of the boundary contour. The results of the tested examples show that, the residual volume is minimized when comparing the proposed algorithm with the previous method.

OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM

  • Kim, Y.D.;Kim, W.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.563-573
    • /
    • 2007
  • Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

Geolocation Spectrum Database Assisted Optimal Power Allocation: Device-to-Device Communications in TV White Space

  • Xue, Zhen;Shen, Liang;Ding, Guoru;Wu, Qihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4835-4855
    • /
    • 2015
  • TV white space (TVWS) is showing promise to become the first widespread practical application of cognitive technology. In fact, regulators worldwide are beginning to allow access to the TV band for secondary users, on the provision that they access the geolocation database. Device-to-device (D2D) can improve the spectrum efficiency, but large-scale D2D communications that underlie TVWS may generate undesirable interference to TV receivers and cause severe mutual interference. In this paper, we use an established geolocation database to investigate the power allocation problem, in order to maximize the total sum throughput of D2D links in TVWS while guaranteeing the quality-of-service (QoS) requirement for both D2D links and TV receivers. Firstly, we formulate an optimization problem based on the system model, which is nonconvex and intractable. Secondly, we use an effective approach to convert the original problem into a series of convex problems and we solve these problems using interior point methods that have polynomial computational complexity. Additionally, we propose an iterative algorithm based on the barrier method to locate the optimal solution. Simulation results show that the proposed algorithm has strong performance with high approximation accuracy for both small and large dimensional problems, and it is superior to both the active set algorithm and genetic algorithm.

Optimal Design of Lenticular Lens Sheet for the 3D Display on TFT-LCDs (TFT-LCD의 3차원 영상출력을 위한 렌티큘러 렌즈 최적설계)

  • Kim, Il-Joo;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.257-261
    • /
    • 2009
  • In this study, we have researched the optimum design method of the lenticular lens sheet for 3D displays on a TFT-LCD panel, to offer a more stable stereoscopic image, improved 3D quality, and a wider viewing zone. Especially, we have defined the viewing zone width (a parameter denoted as Z) to apply it to the optimum design. The results of this new design method have been compared with the existing design method. As a result, it is revealed that the proposed design method improves the stereoscopic image quality by reducing the black matrix zone width.

A Study on Octree Construction Algorithm for 3D Objects (3차원 물체에 대한 8진 트리 구성 알고리즘에 관한 연구)

  • 최윤호;송유진;홍민석;박상희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.1-10
    • /
    • 1992
  • This study presents a complete octree construction algorithm for 2D depth images obtained from orthogonal face views, which can represent 3D objects exactly. In constructing quadtree, optimal quadtree construction algorithm is applied to depth images for efficient use of memory and reduction of tree construction time. In addition, pseudo-octrees are constructed by using our proposed method, which construct pseudo-octrees according to the resolution value given in each node of constructed quadtree and mapping relation between quadrants and octants. Finally, a complete octree, which represents a 3D object, is constructed by volume intersection with each constructed pseudo-octree. The representation accuracy of a complete octree constructed by our algorithm is investigated by using a 3D display method and a volume ratio method for a complete octree.

  • PDF

A Stable A/D Conversion of Load Cell Signal by Single Chip Microprocessor (싱글칩 마이크로프로세서에 의한 로드셀 신호의 A/D 변환 안정화 처리)

  • Park, C.W.;An, K.H.;Choi, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.450-452
    • /
    • 1993
  • In this study, a method is suggested to design the A/D conversion system which has high resolution to convert load cell signal. First, hardware was designed to reduce the offset voltage of integrator and comparator. And then, a calibration software technique was performed to obtain the stable data from A/D converter. The optimal parameters of each elements in the circuits was selected using the SPICE simulation. The main advantage of our method is high precision A/D converter can be constructed with low cost and high confidence. Therefore proposed method is expected to be used in the industrial field where a high precision measurement is required.

  • PDF

A Comparative Study on Statistical Clustering Methods and Kohonen Self-Organizing Maps for Highway Characteristic Classification of National Highway (일반국도 도로특성분류를 위한 통계적 군집분석과 Kohonen Self-Organizing Maps의 비교연구)

  • Cho, Jun Han;Kim, Seong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.347-356
    • /
    • 2009
  • This paper is described clustering analysis of traffic characteristics-based highway classification in order to deviate from methodologies of existing highway functional classification. This research focuses on comparing the clustering techniques performance based on the total within-group errors and deriving the optimal number of cluster. This research analyzed statistical clustering method (Hierarchical Ward's minimum-variance method, Nonhierarchical K-means method) and Kohonen self-organizing maps clustering method for highway characteristic classification. The outcomes of cluster techniques compared for the number of samples and traffic characteristics from subsets derived by the optimal number of cluster. As a comprehensive result, the k-means method is superior result to other methods less than 12. For a cluster of more than 20, Kohonen self-organizing maps is the best result in the cluster method. The main contribution of this research is expected to use important the basic road attribution information that produced the highway characteristic classification.

반응면 기법을 이용한 에어포일 공력형상 최적설계

  • Park, Young-Min;Kim, Yu-Shin;Chung, Jin-Deog;Lee, Jang-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.248-255
    • /
    • 2004
  • In this study, aerodynamic shape design of airfoils was performed by using RSM(response surface method) and two-dimensional Navier-Stokes solver. Numerical experiment points were determined by D-optimal method and quadratic response surfaces were constructed by using JMP. For the validations of design method, NACA 64621 airfoil was inversely designed to have aerodynamic characteristics of Bell airfoil. The design method was applied to the aerodynamic design of both smart UAV wing airfoil and low Reynolds rotor-blade airfoil for unmanned helicopter. The optimized airfoils showed improved performance with various constraint conditions.

  • PDF