• Title/Summary/Keyword: D-optimal Design

Search Result 1,317, Processing Time 0.03 seconds

A Study on Design of Optimal Load Impedance for Broadband Characteristic Improvement of the Power Amplifier (전력증폭부의 광대역 특성 개선을 위한 최적의 부하 임피던스 설계 방안 연구)

  • Lee, Han-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1166-1173
    • /
    • 2009
  • In this paper, we studied on the power amplifier which has the output of the optimal to 100MHz-2GHz band. Optimal output power match was fabricated using the two types; one is the linear tapering and the other is the impedance transformer. In the case of output power match using linear tapering, output power was 35.35dBm at 2GHz and 31.41dBm at 100MHz. The other case of output match using impedance transformer, output power was 34.8dBm at 2GHz and 33.25dBm at 100MHz. Comparison of the results in the two cases, impedance transformer type present the improved results by l.84dB of output power.

A Methodology of Optimal Design for Solar Heating and Cooling System Using Simulation Tool

  • Lee, Dongkyu;Nam, Hyunmin;Lee, Byoungdoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.540-543
    • /
    • 2015
  • Solar energy is one of the most important alternative energy sources which have been shown to meet high levels of heating and cooling demands in buildings. However, the efficiencies to satisfy these demands using solar energy significantly vary based on the characteristics of individual building. Therefore, this paper is focused on developing the methodology which can help to design optimal solar system for heating and cooling to be in cooperated within the existing buildings according to their load profiles. This research has established the Solar Heating and Cooling (SHC) system which is composed of collectors, absorption chiller, boiler and heat storage tank. Each component of SHC system is analyzed and made by means of Modelica Language and Pistache tool is verified the results. Sequential approximate optimization (SAO) and meta-models determined to 15 design parameters to optimize SHC system. Finally, total coefficient of performance (COP) of the entire SHC system is improved approximately 7.3% points compared to total COP of the base model of the SHC system.

  • PDF

Optimal Miniaturization of Desk-Top Computer by Thermal Design (열유동 해석을 이용한 컴퓨터 구조의 소형화 설계)

  • 박성관
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.318-326
    • /
    • 1999
  • Recently, electronic systems including computers have been rapidly shrinking in size while at the same time the complexity and the capability of these systems continue to grow/sup [1]/. Thus, system volumes have decreased as system power has increased, resulting in dramatic increases in system heat density. The high temperature of the computer system is considered as the major reason for low performance and shortening life of the product. It is necessary to solve this problem due to the heat density increased and to develop the design skill of the computer cabinet according to miniaturization. M4500 desk-top computer was selected for analyzing the thermal management inside cabinet. The cabinet volume, the configuration of the heating devices, the size and location of air ventilation, and the fan selection have been investigated as the important parameters to find out an optimal cabinet design. The objectives of this project were to analyze which design parameters would affect cooling performance by thermal strategy, to design an optimal model, and to measure the temperatures of the main parts to confirm the effect of the thermal design. The temperatures of each part of the optimal model were compared with those of the existing model. As a result. the volume of this miniaturized model was about 16% smaller than that of M4500 without any change in operating performance.

  • PDF

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.

A Study of Design on PD Controller Having Robust Performance Using GA (GA를 이용한 강인한 성능을 가지는 PD 제어기의 설계에 관한 연구)

  • Kim, D.W.;Son, M.H.;Hwang, H.J.;Park, J.H.;Youn, Y.D.;Do, D.H.;Choi, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.795-797
    • /
    • 1998
  • This paper suggests a design method of the optimal PD control system having robust performance. This PD control system is designed by applying genetic algorithm(GA) with reference model to the optimal determination of proportional(P) gain and derivative(D) gain that are given by PD servo controller. These proportional and derivative gains are simultaneously optimized in the search domain guaranteeing the robust performance of closed-loop system. This PD control system is applied to the fuel-injection control system of diesel engine and compared with ${\mu}$ -synthesis control system for robust performance. The effectiveness of this PD control system is verified by computer simulation.

  • PDF

Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions (새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어)

  • Cho Young-ho;Shim Jae-sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

Cellular Parallel Processing Networks-based Dynamic Programming Design and Fast Road Boundary Detection for Autonomous Vehicle (셀룰라 병렬처리 회로망에 의한 동적계획법 설계와 자율주행 자동차를 위한 도로 윤곽 검출)

  • 홍승완;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.465-472
    • /
    • 2004
  • Analog CPPN-based optimal road boundary detection algorithm for autonomous vehicle is proposed. The CPPN is a massively connected analog parallel array processor. In the paper, the dynamic programming which is an efficient algorithm to find the optimal path is implemented with the CPPN algorithm. If the image of road-boundary information is utilized as an inter-cell distance, and goals and start lines are positioned at the top and the bottom of the image, respectively, the optimal path finding algorithm can be exploited for optimal road boundary detection. By virtue of the parallel and analog processing of the CPPN and the optimal solution of the dynamic programming, the proposed road boundary detection algorithm is expected to have very high speed and robust processing if it is implemented into circuits. The proposed road boundary algorithm is described and simulation results are reported.

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.

Improved Excitation Coding for 13 kbps Variable Rate QCELP Coder

  • Kang, Sangwon;Lee, Dong-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.3-6
    • /
    • 1997
  • This paper reports on the optimal design of the excitation codebook in the 13 kbps variable rate QCELP coder of Korean speech. We present two optimal excitation codebooks which consist of 128 and 556 samples, respectively. For the design and test of the improved codebook, a data base of Korean speech is used. A quasi-Newton optimization algorithm was developed to design the codebook. The optimized codebook which remains sparse, can produce an average gain of 0.84 and 0.45 dB in SNR and SEGSNR respectively. Informal listening tests confirm the improvement in speech quality.

  • PDF

Optimal Design of Passive Gravity Compensation System for Articulated Robots (수직다관절 로봇의 중력보상장치 최적설계)

  • Park, Jin-Gyun;Lee, Jae-Young;Kim, Sang-Hyun;Kim, Sung-Rak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.103-108
    • /
    • 2012
  • In this paper, the optimal design of a spring-type gravity compensation system for an articulated robot is presented. Sequential quadratic programming (SQP) is adopted to resolve various nonlinear constraints in spring design such as stress, buckling, and fatigue constraints, and to reduce computation time. In addition, continuous relaxation method is used to explain the integer-valued design variables. The simulation results show that the gravity compensation system designed by proposed method improves the performance effectively without additional weight gain in the main workspace.