• Title/Summary/Keyword: D-optimal Design

Search Result 1,314, Processing Time 0.029 seconds

Design of a Perforated Panel for Transmission Noise Reduction (투과 소음 저감을 위한 다공성 패널 설계)

  • Park, Younghyo;Bae, Jaehyeok;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.437-445
    • /
    • 2015
  • A design method for a perforated panel is suggested to reduce the level of incident noise without obstructing the flow of incoming fluid. The key idea was to insert an array of 1/4 wavelength tubes around the holes of the perforate panel. First, various case studies were performed for a unit model with only one hole. In order to avoid any increase in the panel thickness, the unit model was vertically divided into three layers, and only the middle layer was used as the design domain. The number and array of 1/4 wavelength tubes connected to the hole were optimized to obtain the widest effective frequency range in the transmission loss curve as possible. Then, the optimally designed unit model was converted to a periodic array in the perforated panel to achieve the design goals. Even if the target frequency and the target transmission loss were set to 1000 Hz and 10 dB, respectively, the suggested design method for the a perforated panel could achieve noise reduction for various target values.

Selection and Design of Functional Area of Compression Garment for Improvement in Knee Protection (무릎 안전성 향상을 위한 컴프레션 의복의 기능적 디자인 영역 선정과 설계법)

  • Lee, Hyo Jeong;Kim, Nam Yim;Hong, Kyung Hi;Lee, Ye Jin
    • Korean Journal of Human Ecology
    • /
    • v.24 no.1
    • /
    • pp.97-109
    • /
    • 2015
  • Recently, because the market for compression wear now includes all consumers, not just professionals, various items for recovery after exercising or for enhanced effects from exercise have been introduced. In this research, a systematic and stepwise design process was proposed to develop compression garment that has both functional area and appropriate pressure to protect the knee when exercising. The U-V format functional area that wraps underneath the knee was selected by considering the shape and change in the skin length when bending the knee. After the selection of the functional area, a total of seven knee design areas, including the existing product, were designed to determine the appropriate pressure. After various movements, the compression garment was ranked in terms of support of the knee, level of pressure, discomfort of seam line, and comfort of popliteal; the preferred design was selected using the quad method. Four compression wear garments were produced using two selected preferred designs; the wear evaluation was performed using a seven-point Likert scale. As a result, the optimal reduction rate of the pattern was calculated based on Ziegert and Keil's method. The applied percentage of the fabric stretch at the upper part of the crotch was 66% for the width and 50% for the length; for the lower part of the crotch, only 66% for the width was applied. Moreover, it was determined that the design of the U-V knee protection part was preferred when a 7 mm square was placed at a 1 mm distance because this not only supports the knee but also allows the fabric to accommodate various skin deformations.

Optimum Bar-feeder Support Positions of a Miniature High Speed Spindle System by Genetic Algorithm (유전 알고리듬을 이용한 소형 고속스핀들 시스템의 바-피더 지지부의 위치 최적선정)

  • Lee, Jae-Hoon;Kim, Mu-Su;Park, Seong-Hun;Kang, Jae-Keun;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.99-107
    • /
    • 2009
  • Since a long work piece influences the natural frequency of the entire system with a miniature high speed spindle, a bar-feeder is used for a long work piece to improve the vibration characteristics of a spindle system. Therefore, it is very important to design optimally support positions between a bar-feeder and a long work piece for a miniature high speed spindle system. The goal of the current paper is to present an optimization method for the design of support positions between a bar-feeder and a long work piece. This optimization method is effectively composed of the method of design of experiment (DOE), the artificial neural network (ANN) and the genetic algorithm (GA). First, finite element models which include a high speed spindle, a long work piece and the support conditions of a bar-feeder were generated from the orthogonal array of the DOE method, and then the results of natural vibration analysis using FEM were provided for the learning inputs of the neural network. Finally, the design of bar-feeder support positions was optimized by the genetic algorithm method using the neural network approximations.

Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

  • Le, Tuyen Quang;Lee, Kwang-Soo;Park, Jin-Soon;Ko, Jin Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.257-268
    • /
    • 2014
  • In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flow-driven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

Performance Optimization Study of FinFETs Considering Parasitic Capacitance and Resistance

  • An, TaeYoon;Choe, KyeongKeun;Kwon, Kee-Won;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.525-536
    • /
    • 2014
  • Recently, the first generation of mass production of FinFET-based microprocessors has begun, and scaling of FinFET transistors is ongoing. Traditional capacitance and resistance models cannot be applied to nonplanar-gate transistors like FinFETs. Although scaling of nanoscale FinFETs may alleviate electrostatic limitations, parasitic capacitances and resistances increase owing to the increasing proximity of the source/drain (S/D) region and metal contact. In this paper, we develop analytical models of parasitic components of FinFETs that employ the raised source/drain structure and metal contact. The accuracy of the proposed model is verified with the results of a 3-D field solver, Raphael. We also investigate the effects of layout changes on the parasitic components and the current-gain cutoff frequency ($f_T$). The optimal FinFET layout design for RF performance is predicted using the proposed analytical models. The proposed analytical model can be implemented as a compact model for accurate circuit simulations.

CAD/CAM splint based on soft tissue 3D simulation for treatment of facial asymmetry

  • Tominaga, Kazuhiro;Habu, Manabu;Tsurushima, Hiroki;Takahashi, Osamu;Yoshioka, Izumi
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.4.1-4.6
    • /
    • 2016
  • Background: Most cases of facial asymmetry involve yaw deformity, and determination of the yaw correction level is very difficult. Methods: We use three-dimensional soft tissue simulation to determine the yaw correction level. This three-dimensional simulation is based on the addition of cephalometric prediction to gradual yaw correction. Optimal yaw correction is determined visually, and an intermediate splint is fabricated with computer-aided design and computer-aided manufacturing. Application of positioning devices and the performance of horseshoe osteotomy are advisable. Results: With this procedure, accurate repositioning of jaws was confirmed and patients obtained fairly good facial contour. Conclusions: This procedure is a promising method for a widespread, predictable treatment of facial asymmetry.

CHANGES IN STAGNATION REGION AND RESIDENCE TIME OF COOLING WATER FOR VARIOUS FLOW CHANNEL GEOMETRY OF WATER COOLING GRATE (수냉식 화격자 유로 형상에 따른 냉각수의 정체 영역 및 체류 시간 변화)

  • Song, D.K.;Kim, S.B.;Park, D.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • Waste-to-energy facilities including incinerators are known as an efficient method to reduce wastes. In waste-to-energy facilities, more efficient cooling system is still needed for grates as the energy density of waste increased. For better cooling performance with the water-cooled grates, optimal design of cooling water pathways is highly beneficial. We performed numerical investigation on fluid flow and residence time of cooling water with change of the geometry of the cooling water pathway. With addition of round shaped guide vanes in the water pathway, the maximum residence time of flow is reduced(from 4.3 sec. to 2.4 sec.), but there is no significant difference in pressure drop between inlet and outlet, and average residence time at the outlet. Furthermore the flow stagnation region moves to the outlet, as the position of the round shaped guide vanes is located to the neck point of pathways.

The Optimal Design of POF Optical Connector for Medical Image Transmission System (의료영상전송시스템을 위한 POF 광커넥터의 최적 설계)

  • Cheon, Min-Woo;Cho, Kyung-Jae;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.978-982
    • /
    • 2010
  • For mass information transfer, the optical communication using optic fiber has been widely used. Especially, in the field of medical image, the large data is digitalized based on the standard image and it is used for telemedicine with this method. Therefore, to transfer the large amount of data fast and effectively POF (Plastic Optical Fiber) can be used and the development of optic connector for connection between POFs is very important. In this study, for stable optical coupling of POF optic fiber Ferrule and Sleeve were designed and produced by considering the bond stability and the insertion loss according to the physical contact and roughness profile was evaluated. As a result of examining the insertion loss by physical contact method of two optic fibers, it showed the loss was about 1.895dB. According to the results from studying the condition of grinding section for POF mass production, the mass production condition was established as POF profile roughness of 6nm and the loss of 0.2dB or lower by controlling the film size and time step by step.

Design and Manufacture of CPW-fed Two Arc-shaped Antenna for WLAN Applications (WLAN 시스템을 위한 두 개 원호 형태 안테나의 설계와 제작)

  • Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.765-771
    • /
    • 2015
  • In this paper, a dual-band arc-shaped monopole antenna for WLAN(Wireless Local Area Networks) applications. The proposed antenna is based on CPW-fed structure, and composed of two-arc shaped of radiating patch and ground plane. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator (HFSS) and found the parameters that greatly effect antenna characteristics. Using optimal parameters, the antenna is fabricated. The numerical and experiment results demonstrated that the propnosed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN bands. And measured results of gain and radiation patterns characteristics displayed determined for opeating bands.

A Cross-Layer Unequal Error Protection Scheme for Prioritized H.264 Video using RCPC Codes and Hierarchical QAM

  • Chung, Wei-Ho;Kumar, Sunil;Paluri, Seethal;Nagaraj, Santosh;Annamalai, Annamalai Jr.;Matyjas, John D.
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.53-68
    • /
    • 2013
  • We investigate the rate-compatible punctured convolutional (RCPC) codes concatenated with hierarchical QAM for designing a cross-layer unequal error protection scheme for H.264 coded sequences. We first divide the H.264 encoded video slices into three priority classes based on their relative importance. We investigate the system constraints and propose an optimization formulation to compute the optimal parameters of the proposed system for the given source significance information. An upper bound to the significance-weighted bit error rate in the proposed system is derived as a function of system parameters, including the code rate and geometry of the constellation. An example is given with design rules for H.264 video communications and 3.5-4 dB PSNR improvement over existing RCPC based techniques for AWGN wireless channels is shown through simulations.