• Title/Summary/Keyword: D-filter

Search Result 2,686, Processing Time 0.029 seconds

Object Tracking in 3-D Space with Passive Acoustic Sensors using Particle Filter

  • Lee, Jin-Seok;Cho, Shung-Han;Hong, Sang-Jin;Lim, Jae-Chan;Oh, Seong-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1632-1652
    • /
    • 2011
  • This paper considers the object tracking problem in three dimensional (3-D) space when the azimuth and elevation of the object are available from the passive acoustic sensor. The particle filtering technique can be directly applied to estimate the 3-D object location, but we propose to decompose the 3-D particle filter into the three planes' particle filters, which are individually designed for the 2-D bearings-only tracking problems. 2-D bearing information is derived from the azimuth and elevation of the object to be used for the 2-D particle filter. Two estimates of three planes' particle filters are selected based on the characterization of the acoustic sensor operation in a noisy environment. The Cramer-Rao Lower Bound of the proposed 2-D particle filter-based algorithm is derived and compared against the algorithm that is based on the direct 3-D particle filter.

A Ultra-Wideband Bandpass Filter Using DGS structure (DGS구조를 이용한 초광대역 대역통과 여파기)

  • Jung, Seung-Back;Yang, Seung-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.162-167
    • /
    • 2009
  • In this paper, we present a compact Ultra-Wideband band-pass filter using a high-pass filter and low-pass filter. The structure of our proposed band-pass filter is very simple and the DGS(Defected Ground Structure) structure is used to get the low-pass filter characteristic. Our proposed band-pass filter can be much smaller than a cascaded filter. As a result of measurement the insertion loss is less than 0.5dB throughout the pass-band of $2.1GHz{\sim}10.56GHz$, the return loss is more than 20dB and the group delay maximum variation is 0.23ns from 0.12ns to 0.35ns.

A Compact LTCC Dual-Band WLAN Filter using Two Notch Resonators

  • Park, Jun-Hwan;Cheon, Seong-Jong;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.168-175
    • /
    • 2013
  • This paper presents compact dual-band WLAN filter and filter module. They were developed by embedding all of the passive lumped elements into a LTCC substrate. In order to reduce the size/volume of the filter and avoid EM parasitic couplings between the passive elements, the proposed filter was designed using a 3rd order Chebyshev circuit topology and J-inverter transformation technology. The 3rd order Chebyshev bandpass filter was firstly designed for the band-selection of the 802.11b and was then transformed using finite transmission zeros technologies. Finally, the dual-band filter was realized by adding two notch resonators to the 802.11b filter circuit for the band-selection of the 802.11a/g. The maximum insertion losses in the lower and higher passbands were better than 2.0 and 1.3 dB with minimum return losses of 15 and 14 dB, respectively. Furthermore, the filter was integrated with a diplexer to clearly split the signals between 2 and 5 GHz. The maximum insertion and minimum return losses of the fabricated module were 2.2 and 14 dB at 2.4 - 2.5 GHz, and 1.6 and 19 dB at 5.15 - 5.85 GHz, respectively. The overall volume of the fabricated filter was $2.7{\times}2.3{\times}0.59mm^3$.

Design and Fabrication of Filter Banks for Implementation of Cavity Tunable Filter (캐비티 가변필터의 구현을 위한 필터뱅크 설계 및 제작)

  • Shin, Yeonho;Kang, Sanggee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.169-173
    • /
    • 2014
  • In order to satisfy user's requirements of needs for various services and to efficiently use of frequency, a communication system using one platform can support many communication services. Tunable filters must be used in the front end of broadband communication systems which provide and support various communication methods. In this paper we design and implement a filter bank to verify the feasibility of cavity tunable filter with the operation frequency of 800 MHz ~ 1600 MHz. The filter bank is composed of five bandpass filters and each bandpass filter has the same operation frequency band of the tunable filter. The implemented filter bank has the maximum insertion loss of 0.326 dB, the bandwidth of 37 MHz ~ 84 MHz, and the attenuation of minimum 19.974dB and mximum 37.812dB at the band edge ${\pm}60MHz$ over the operating frequency band.

D-CRLH Based Band Rejection Filter using a Concavo-Convex Coupled CPW Transmission Line

  • Seo, Soo-Duk;Cho, Hak-Rae;Yang, Doo-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, the use of a dual composite right/left-handed coplanar waveguide (CPW) transmission line is proposed for the design of a band rejection filter. The notch property of the filter is achieved by combining the convex signal line with the shorted concave meander line, and the equivalent circuit model is extracted from the geometry of the unit cell for organizing the band rejection property. Then the equivalent parameters of the unit cell are analyzed to identify those behaviors. And the dispersion characteristics and energy distributions are simulated. In the end, the band rejection filter is manufactured by cascading two proposed unit cells. We show that the measurement result for the resonant frequency demonstrates good agreement with the simulation result and the band rejection filter provides a rejection performance of 17.5 dB at the stopband frequency ranging from 869 MHz to 894 MHz.

Design and Fabrication of CDMA Base Station SAW Band Pass Filter (CDMA 기지국용 SAW BAND PASS FILTER 의 설계 및 제작)

  • 김재천;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.31-34
    • /
    • 1998
  • CDMA base station SAW filter has been designed and fabricated successfully. Through the computer simulation, SAW filter is designed to have center frequency of 69.99MHz, ripples lower than 0.7dB and rejection level lower than 50dB. To obtain low noise band pass SAW filter, Input electrode has a apodization type and output electrode has a withdrawal type. For the fabrication of the SAW filter, Al thin film is deposited to the quartz substrates. The fabricated SAW filter has center frequency of 70.5MHz, ripples of 1dB and rejection level of 45dB.

  • PDF

Single-Channel Speech Separation Using the Time-Frequency Smoothed Soft Mask Filter (시간-주파수 스무딩이 적용된 소프트 마스크 필터를 이용한 단일 채널 음성 분리)

  • Lee, Yun-Kyung;Kwon, Oh-Wook
    • MALSORI
    • /
    • no.67
    • /
    • pp.195-216
    • /
    • 2008
  • This paper addresses the problem of single-channel speech separation to extract the speech signal uttered by the speaker of interest from a mixture of speech signals. We propose to apply time-frequency smoothing to the existing statistical single-channel speech separation algorithms: The soft mask and the minimum-mean-square-error (MMSE) algorithms. In the proposed method, we use the two smoothing later. One is the uniform mask filter whose filter length is uniform at the time-Sequency domain, and the other is the met-scale filter whose filter length is met-scaled at the time domain. In our speech separation experiments, the uniform mask filter improves speaker-to-interference ratio (SIR) by 2.1dB and 1dB for the soft mask algorithm and the MMSE algorithm, respectively, whereas the mel-scale filter achieves 1.1dB and 0.8dB for the same algorithms.

  • PDF

Design of BPF for WLAN with Heterogeneous LTCC Materials (이종적층 LTCC 기술을 이용한 WLAN용 대역통과 필터 설계)

  • Ko, Jeong-Ho;Yook, Jong-Gwan;Park, Han-Kyu;Kim, Jun-Chul;Lee, Young-Shin
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.188-192
    • /
    • 2003
  • A multilayer two-stage LC bandpass filter using low-temperature cofired-ceramic (LTCC) is proposed in this paper. The proposed bandpass filter is composed of two ceramic substrates with different dielectric constant instead of single ceramic material from top to bottom layer. The bandpass filter size is $2.0 mm{\times}1.2 mm{\times}0.8 mm$. Positioning of attenuation polefrequency, importance parameter for a performance of filter, is discussed using even-odd mode analysis by tuned capacitance of coupling capacitor and those results is implemented to LTCC filter circuit. Measured filter performances show that the insertion losses are -4.5dB, -4.1dB at 2.45GHz, 2.75GHz and the return losses are -8.5dB, 8.7dB.

  • PDF

Adaptive Nonlinear Filter for Removal of Salt-Pepper Noise in Infrared Image (적외선 영상의 Salt-Pepper 잡음제거를 위한 적응 비선형 필터)

  • Lee, Je-Il;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.429-434
    • /
    • 2006
  • In this paper, detection based - adaptive windowed nonlinear filter(DB-AWNF) is proposed for removing salt-pepper noise in infrared image. This filter is composed of impulse detector and window-size-variable median filters. Impulse detector checks whether current pixel is impulse or not using range function and nonlinear location estimator. If impulse is detected, current pixel is filtered according to four kinds of local masks by use of median filter. If not, current pixel is delivered to output like identity filter. In Qualitative view, the proposed could have removed heavy corrupted noise up to 30% and reserved the details of image. In quantitative view, PSNR was measured. The proposed could have about 12-31[dB] more improved performance than those of median $(3{\times}3)$ filter and 13-29[dB] more improved performance than those of median $(5{\times}5)$ filter.

Interference-filter-based stereoscopic 3D LCD

  • Simon, Arnold;Prager, M. G.;Schwarz, S.;Fritz, M.;Jorke, H.
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.24-27
    • /
    • 2010
  • A novel stereo 3D LCD for passive interference filter glasses is presented. A demonstrator based on a standard 120Hz LCD was set up. Stereoscopic image separation was realized in a time-sequential mode using a LED-based scanning backlight with two complementary spectra. A stereo brightness of 3 cd/$m^2$ and a channel separation of 30:1 were achieved.