DOI QR코드

DOI QR Code

Design and Fabrication of Filter Banks for Implementation of Cavity Tunable Filter

캐비티 가변필터의 구현을 위한 필터뱅크 설계 및 제작

  • Shin, Yeonho (Kunsan National University, Dept. of Information & Telecommunication Engineering) ;
  • Kang, Sanggee (Kunsan National University, Dept. of Information & Telecommunication Engineering)
  • 신연호 (군산대학교 정보통신공학과) ;
  • 강상기 (군산대학교 정보통신공학과)
  • Received : 2014.08.24
  • Accepted : 2014.12.12
  • Published : 2014.12.31

Abstract

In order to satisfy user's requirements of needs for various services and to efficiently use of frequency, a communication system using one platform can support many communication services. Tunable filters must be used in the front end of broadband communication systems which provide and support various communication methods. In this paper we design and implement a filter bank to verify the feasibility of cavity tunable filter with the operation frequency of 800 MHz ~ 1600 MHz. The filter bank is composed of five bandpass filters and each bandpass filter has the same operation frequency band of the tunable filter. The implemented filter bank has the maximum insertion loss of 0.326 dB, the bandwidth of 37 MHz ~ 84 MHz, and the attenuation of minimum 19.974dB and mximum 37.812dB at the band edge ${\pm}60MHz$ over the operating frequency band.

다양한 서비스에 대한 사용자의 욕구를 충족시키고, 주파수를 효율적으로 사용하기 위해서 여러 통신방식을 하나의 플랫폼에서 제공할 필요가 있다. 다양한 통신방식을 수용하는 광대역 무선통신시스템을 구현하기 위해서는 통신시스템 전단부에 반드시 대역가변필터를 사용해야 한다. 본 논문에는 캐비티 공진기의 구조를 갖는 800 MHz ~ 1600 MHz 범위의 대역가변필터의 구현 가능성을 확인하기 위해서 동일한 동작주파수 범위를 갖는 필터뱅크를 설계 및 제작하였다. 필터뱅크는 원하는 동작주파수 범위에서 5개의 대역통과필터로 제작하였고, 제작한 필터뱅크의 삽입손실은 최대 0.326 dB, 대역폭은 37 MHz ~ 84 MHz 그리고 감쇠특성은 대역 가장자리 ${\pm}60MHz$ 지점에서 최소 19.974 dB와 최대 37.812 dB로 측정되었다.

Keywords

References

  1. M. Kmec, M. Helbig and J. Sachs, "Integrated Ultra-Wideband Hardware for MIMO Sensing Using Pn-sequence Approach," IEEE ICUWB, Sep. 2012.
  2. C.-H. Yang, T.-H. Yu and D. Markovic, "A 5.8mW 3GPP-LTE Compliant 8${\time}$8 MIMO Sphere Decoder Chip with Soft-Outputs," IEEE VLSIC, June. 2010.
  3. Won-Hui Lee and Tae-Jin Chung, "Implementation of Ultra-Wideband Microstrip Bandpass Filter for 10 Gb/s Wireless Transmission THz Transmitter and Receiver," JIIBC, vol. 11, no 4,pp. 1-8, August 2011.
  4. B. W. Kim and S. W. Yun, "Varactor-tuned combline bandpass filter using step-impedance microstrip lines," IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1279-1283, 2004. https://doi.org/10.1109/TMTT.2004.825626
  5. S.R. Chandler, I.C. Hunter and J.G. Gardiner, "Active varactor tunable bandpass filter," IEEE Microwave and Guided Wave Letters, vol. 3, no 3, pp. 70-71, March 1993. https://doi.org/10.1109/75.205668
  6. G. L. Matthaei, L. Young and E. M. T. Jones, Microwave Filters: Impedance-Matching Networks: and Coupling Structures, Artech House, 1964.
  7. J.-S. Hong and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2109, 1996. https://doi.org/10.1109/22.543968
  8. Keehong Um, Sooyeup Yoo, Chairat Pinthong, "Derivation of Zeros from Externally-loaded Feed-forward Element of Filter Network," The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 6, No. 1, pp. 13-15, 2012.
  9. Jinyoung Kim, Changwon Jung, "Broad Band Stop Filter Using Frequency Selective Surface Embeded in Microwave Transmission Line," The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 13, No. 12, pp. 6620-6026, 2012. https://doi.org/10.5762/KAIS.2012.13.12.6022