• Title/Summary/Keyword: Cytoplasm, Somatic cell

Search Result 35, Processing Time 0.026 seconds

Development of Reversing the Usual Order of Somatic Cell Nuclear Transfer in Mice

  • Kang, Ho-In;Sung, Ji-Hye;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.26 no.1
    • /
    • pp.85-89
    • /
    • 2011
  • Somatic cell nuclear transfer (SCNT) is a useful tool for reproducing genetically identical animals or producing transgenic animals. Many reports have demonstrated that the efficiency of animal cloning by SCNT requires reprogramming of the somatic nucleus to a totipotent like-state. The SCNT-related reprogramming might mimic the natural reprogramming process that occurs during normal mammalian development. However, recent evidence indicates that the reprogramming event by SCNT is incomplete. In this study, the traditional SCNT procedure (TNT) was modified by injecting donor nuclei into recipient cytoplasm prior to the enucleation process to expose the donor nucleus before removing the karyoplast containing the chromosomes of the oocytes which might possess additional reprogramming factors, and this modified technique was named as reversing the usual order of SCNT (RONT). Other procedures including activation and in vitro culture were the same as TNT. Contrary to expectations, the rate of blastocyst development was not different significantly between RONT and TNT (8.6% and 7.9%, respectively). However, duration of micromanipulation performed by the same technician and equipments was remarkably reduced because the ruptured oocytes after nuclear injection were excluded from the enucleation process. This study suggests that RONT, a simplified SCNT protocol, shortens the duration of SCNT procedure and this less time-costing protocol may enable the researchers to perform murine SCNT easier.

In Vitro Development of Interspecies Nuclear Transfer Embryos using Porcine Oocytes with Goat and Rabbit Somatic Cells

  • Quan, Yan Shi;Naruse, Kenji;Choi, Su-Min;Kim, Myung-Youn;Han, Rong-Xun;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.249-253
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro-matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM-199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1kV/cm for $30{\mu}s$ 0.3M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium-3 (PZM-3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM-3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine-porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat-porcine and porcine-bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.

Effect of the Timing of Oocyte Activation on Development of Rat Somatic Cell Nuclear Transfer Embryos

  • Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.29 no.4
    • /
    • pp.229-234
    • /
    • 2005
  • Methods for activation of reconstructed oocytes were examined for the production of nuclear transfer (NT) rat embryos using fetal neural stem cells as donor. Neural stem cells were isolated from Day 14.5 rat fetuses, and the oocytes for recipient cytoplasm were recovered from 4-week old Sprague Dawley rats. After enucleation and nuclear injection, the reconstructed oocytes were immediately exposed to activation medium consisting of 10 mM $SrCl_2$ for 4 h (immediate activation after injection; IAI), or cultured in vitro for $2\~3$ h before activation treatment (injection before activation; IBA). Pre-activated oocytes were also used for NT to test reprogramming potential of artificially activated oocytes. The oocytes were grouped as IIA (immediate injection after activation) and ABI (activation $2\~3$ h before injection). Following NT, the oocytes were cultured in vitro. Development of the NT embryos was monitored at 44 and 119 h after activation. The embryos in groups IAI, mA, and IIA were cleaved to the 2-cell stage at the rates of $36.6\%\;(15/41),\;39.5\%\;(17/43)\;and\;46.3\%$ (25/54), respectively. However, in the ABI group, only one embryo ($1.8\%$, 1/55) was cleaved after activation. After in vitro culture, two NT embryos from IAI group had developed to the morula stage $(4.9\%\cdot2/41)$. However, no morula or blastocyst was obtained in the other groups. These results suggest that immediate activation after injection (IAI) method may be used for the production of rat somatic cell NT embryos.

Anatomical Observation of Somatic Embryogenesis in Oenanthe javanica ($B^{L}.$) DC. (미나리 체세포 배발생과정의 해부학적 관찰)

  • Gab Cheon KOH;Chang Soon AHN
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.323-327
    • /
    • 1995
  • This experiment was carried out to observe the origin and developmental pattern of somatic embryos of Oenanthe javanica ($B^{L}.$) DC. The experiment included observation of embryogenic cells and their development stages by light microscope, transmission electron microscope and scanning electron microscope. The embryogenic cells, which were smaller than non-embryogenic cells in size with expanded nucleus and dense cytoplasm. When stained with hematoxylin, the embryogenic cells were readily distinguished from the non-embryogenic cells of which cell walls were stained with safranin. It was observed at somatic embryos developed from single cells on the epidermis of developing embryos or in the surface or inside of embryogenic clumps by segmentation pattern. Observation with a transmission electron microscope revealed that the embryogenic cells had dense cytoplasm expanded nucleus, small vacuoles, large amyloplasts containing starch grains, and abundant organelles including lipid bodies. Under a scanning electron microscope, embryogenic callus was shown to consist of very smaller cells than non-embryogenic cells in an orderly arrangement and covered with a net-like structure, while the non-embryogenic callus consisted of large cells, irregular in size and arrangement, and covered with a gelatin-like material.

  • PDF

Developmental Potential of Interspecies Nuclear Transferred Embryos using Mouse Embryonic Fibroblast In Vitro

  • B.S.Koo;Yoon, J.I.;Son, H.Y.;Kim, M.G.;Park, C.H.;Lee, S.G.;Lee, Y.I.;Lee, C.K.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.109-109
    • /
    • 2003
  • Even though success in birth of live offspring from nuclear transfer(NT) using somatic cells in many species, detailed information on processes or mechanisms of development are not well known. Cytoplasm of bovine oocyte has been known to support the development of nuclear transferred embryos using nuclear donor cells from different species. Therefore, interspecies NT might be used to find answers of some questions in basic aspect of nuclear transfer In this study, we examined the developmental potential of reconstructed embryos when bovine oocyte as a cytoplasm recipient and mouse embryonic fibroblast as a nuclear donor were used. The nuclear transfer units were aliocated in Group 1 (murine block media and normal media) and Group 2. (bovine block media and normal media). NT units were not blocked at 2-cell stage regardless of types of medium. On mouse media, poor development of interspecies NT units was observed compared to bovine media. However, as NT units cultured in bovine normal medium, embryos developed over 8-cell stage. Further studies performed to increase the developmental rate in condition of antioxidant treatment. Despite low development, bovine-murine interspecies nuclear transferred embryos could develop to blastocysts and they showed that blastocyts rate of antioxidant group was superior to those of non-antioxidant group. Next, we investigated gene expression pattern which is carried out for zygotic activation. The Xist gene is expressed in female mouse embryo after zygotic activation of 4-cell stage. But interspecies nuclear transferred embryos do not express Xist gene at 4-cell stage. As a result, it is suggested that the bovine cytoplasm controls the early preimplantation development in interspecies NT However, the development of later stages might require genomic control from transferred donor nucleus. Therefore, even though the involvement of several other factors such as mitochondrial incompatibility, effective development of embryos produced by interspecies NT requires proper genomic activation of donor nucleus after overcoming the cytoplasmic control of recipient oocytes.

  • PDF

Localization of Cyclin B and Erk1/2 in Ovine Oocytes and MPF and MAPK Activities in Cytoplast and Karyoplast following Enucleation

  • Lee, Joon-Hee;Campbell, Keith H.S.
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.407-414
    • /
    • 2011
  • The development of embryos reconstructed by somatic cell nuclear transfer (SCNT) is dependent upon numerous factors. Central to development is the quality and developmental competence of the recipient cytoplast and the type of the donor nucleus. Typically metaphase of the second meiotic division (MII) has become the cytoplast of choice. Production of a cytoplast requires removal of the recipient genetic material, however, it may remove proteins which are essential for development or reduce the levels of cytoplasmic proteins to influence subsequent reprogramming of the donor nucleus. In this study, enucleation at MII did not affect the activities of either MPF or MAPK kinases. Immunocytochemical staining showed that both Cyclin B1 (MPF) and Erk1/2 (MAPK) were associated with the meiotic spindle of AI/TI oocytes with little staining in the cytoplasm, however, at MII association of both proteins with the spindle had reduced and a greater degree of cytoplasmic distribution was observed. The analysis of oocyte proteins removed during enucleation is a difficult approach to the identification of factors which may be depleted in the cytoplast. This is primarily due to the large numbers of aspirated karyoplasts which would be required for the analysis.

Gene Expressions in Bovine Nuclear Transferred Embryos with Mouse Fetal Fibroblast Cell

  • Park, Sang-Hyun;Park, Sang-Wook;Yun, Ji-Yung;Jun, Soon-Hong;Kim, Nam-Hyung
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.11-11
    • /
    • 2002
  • Interspecies nuclear transfer has been interested to determine ability of oocyte cytoplasm to support reprogramming of somatic cell nuclei of different species. In this study, we investigated developmental ability and mRNA expression patterns of developmentally important genes in bovine reconstructed embryos using a mouse fibroblast cell nucleus. While 20% nuclear transferred embryos with bovine fibroblast developed to morulae/blastocysts, a few(2-5%) nuclear transferred bovine embryos with mouse fibroblast developed to morula. (omitted)

  • PDF

Development of Somatic Cell Nuclear Transfer Bovine Embryos following Activation Time of Recipient Cytoplasm (수핵란의 활성화 시간에 따른 소 체세포 핵이식란의 발육)

  • Park, Sun-Young;Kwon, Dae-Jin;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2006
  • This study was conducted to examine the effect of pre activation treatment and activation time of recipient cytoplasm on the development of bovine somatic cell nuclear transfer(NT) embryos. Donor cells were transferred and electrofused to enucleated oocytes before(pre-AC) or after activation(post-AC). Activation was induced with a combination of $Ca^{2+}$-ionophore(A23187) and DMAP. NT embryos were cultured in CR1aa containing 3 mg/ml BSA for 9 days. Some NT embryos were fixed at 0.5 to 2.5 hr after fusion(for post-AC) or activation(for pre-AC) for confocal microscopy. Developmental rate to the blastocyst stage was slightly high in the post-AC group(20.6%) compared to that of pre-AC group(15.3%). However, developmental speed of embryos in the pre-AC group was faster than that of embryos in the post-AC group. Development rates to the blastocyst stage were similar among different activation time before fusion(0.5,2 and 4 hr). The result of the present study suggests that development and nuclear morphology are affected f the activation status of the recipient cytoplasm before fusion.

Electron Microscopic Study on the Development of the Lateral Motor Column in the Spinal Cord of the Human Fetus (인태아 척수 외측운동주의 발육에 관한 전자현미경적 연구)

  • Yoon, Jae-Rhyong;Choi, Tai-Yeop;Nam, Kwang-Il
    • Applied Microscopy
    • /
    • v.26 no.3
    • /
    • pp.329-348
    • /
    • 1996
  • The prenatal development of lateral motor columns in the lumbar spinal cord was studied by electron microscopy in human embryos and fetuses ranging from 9 mm to 260 mm crown-rump length ($5{\sim}30$ weeks of gestational age). At 9 mm embryo, the lateral motor column were developed from ventro-lateral projection into the marginal layer and composed of primitive neuroblasts. At 20 mm embryo the primitive motor neurons were packed closely together and could readly be distinguished from primitive glioblasts by a presence of large nuclei. The primitive multipolar neurons were observed in lateral motor column at 40 mm fetus. At 80 mm fetus multipolar neurons were characterized by their many dendrites and axons in the vicinity of motor neuron perikarya. At 260 mm fetus, the motor neurons were large and contained all intracytoplasmic structures in the cytoplasm which were also found in mature motor neuron in lateral motor column. The first axo-dendritic synapses found at 40 mm fetus and increased in number throughout fetal development. Axo-somatic synapses with spherical vesicles were first observed at 80 mm fetus. A few axo-somatic synapses were found at next prenatal stages. Axo-dendritic and axo-somatic synapses contained mixed populations of spherical and flattened vesicles by 120 mm fetus. These findings indicate that axo-dendritic synapses develop prior to axo-somatic synapses in the spinal cord during neurogenesis.

  • PDF

Totipotential, Morphological, Biochemical Comparisons between Nonembryogenic Callus and Embryogenic Callus in Water Dropwort(Oenanthe stolonifera DC) (미나리에서 비배발생캘러스와 배발생캘러스간의 분화능력 및 해부학적, 생화학적 특성비교)

  • 빈철구;김병동
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.167-173
    • /
    • 1997
  • The embryogenic callus (EC), from which somatic embryos could be induced, was compared with nonembryogenic callus(NE) to study the origin and features of totipotent cell in water dropwort (Oenanthe stolonifera DC). To induce and maintain of EC and the NE, meristematic stem and immature floret were inoculated in MS media supplemented with 1 mg/L 2,4-D, and with 2.5 mg/L NAA and 5mg/L BA, respectively, The EC was not induced from the NE even after subculturing in MS medium supplemented with 1 mg/L 2,4-D. Plantlets were not regenerated from the NE in hormone-free medium. In histochemical comparison of the EC with the NE by light microscopy, the EC had smaller cells in size, dense cytoplasm, and more starch granules of cells compared to the NE cells. The cell from the EC, as observed by transmission electron microscopy, had smaller vaculoes, well developed ribosomes, mitochondria, and endoplasmic reticulum, whereas the cells from the NE had larger vacuoles and underdeveloped organelles. In protein pattern from NE, EC and Somatic embryo (SE), as analyzed by SDS polyacrylamide gel electrophoresis, different proteins specific for tissue were observed: 17 and 28 KD for NE, 50, 52, 57, 66, 68 KD for EC and 20 KD for SE. DNA polymorphism was also observed between EC and NE as analyzed by RAPD (randomly amplified polymorphic DNA) method. The origin of totipotent stem cell and the relationship between irreversible genomic change arose in differentiation and the loss of totipotency in plant were discussed.

  • PDF