• Title/Summary/Keyword: Cytokine Reporter

Search Result 24, Processing Time 0.035 seconds

Cytokine Reporter Mouse System for Screening Novel IL12/23 p40-inducing Compounds

  • Im, Wooseok;Kim, Hyojeong;Yun, Daesun;Seo, Sung-Yum;Park, Se-Ho;Locksley, Richard M.;Hong, Seokmann
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.288-296
    • /
    • 2005
  • Cytokines interleukin (IL) 12 and 23 play critical roles in linking innate and adaptive immune responses. They are members of heterodimeric cytokines, sharing a subunit p40. Although IL12/23 p40 is mainly induced in macrophages and dendritic cells (DCs) after stimulation with microbial Toll-like receptor ligands, methods to monitor the cells that produce IL12/23 p40 in vivo are limited. Recently, the mouse model to track p40-expressing cells with fluorescent reporter, yellow fluorescent protein, has been developed. Macrophages and DCs from these mice faithfully reported p40 induction using the fluorescent marker. Here we took advantage of these reporter mice to screen bio-compounds for p40-inducing activity. After screening hundreds of compounds, we found several extracts inducing IL12/23 p40 gene expression. Treatment of DCs with these extracts induced the expression of MHC class II and co-stimulatory molecules, which implies that these might be useful as adjuvants. Next, the in vivo target immune cells of candidate compounds were examined. The reporter system can be useful to identify cells producing IL12 or IL23 in vivo as well as in vitro. Thus, our cytokine reporter system proved to be a valuable reagent for screening for immunostimulatory molecules and identification of target cells in vivo.

Association of an Anti-inflammatory Cytokine Gene IL4 Polymorphism with the Risk of Type 2 Diabetes Mellitus in Korean Populations

  • Go, Min-Jin;Min, Hae-Sook;Lee, Jong-Young;Kim, Sung-Soo;Kim, Yeon-Jung
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.114-120
    • /
    • 2011
  • Chronic inflammation has been implicated as one of the important etiological factors in insulin resistance and type 2 diabetes mellitus (T2DM). To investigate the role of anti-inflammatory cytokines in the development of T2DM, we conducted a case-control study to assess the association between IL4/IL4R polymorphisms and disease risk. We firstly identified single nucleotide poly-morphisms (SNP) at IL4 and IL4RA loci by sequencing the loci in Korean participants. Case-control studies were conducted by genotyping the SNPs in 474 T2DM cases and 470 non-diabetic controls recruited from community-based cohorts. Replication of the associated signals was performed in 1,216 cases and 1,352 controls. We assessed effect of IL4 -IL4RA interaction on T2DM using logistic regression method. The functional relevance of the SNP associated with disease risk was determined using a reporter expression assay. We identified a strong association between the IL4 promoter variant rs2243250 and T2DM risk (OR=0.77; 95% CI, 0.67~0.88; p=$1.65{\times}10^{-4}$ in the meta-analysis). The reporter gene expression assay demonstrated that the presence of rs2243250 might affect the gene expression level with ~1.5-fold allele difference. Our findings contribute to the identification of IL4 as a T2D susceptibility locus, further supporting the role of anti-inflammatory cytokines in T2DM disease development.

Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells

  • Park, Eun-Jung;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.453-462
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG), an oriental herbal medicine, has been known to improve liver function, and has both anti-inflammatory and antimicrobial properties. However, little is known about the immune-enhancing effects of PG and its mechanism. In this study, we aimed to investigate whether fermented PG extract (FPGE), which has increased platycodin D content, activates the immune response in a murine macrophage cell line, RAW 264.7. MATERIALS/METHODS: Cell viability was determined by Cell Counting Kit-8 assay and the nitric oxide (NO) levels were measured using Griess reagent. Cytokine messenger RNA levels of were monitored by quantitative reverse transcription polymerase chain reaction. To investigate the molecular mechanisms underlying immunomodulatory actions of FPGE in RAW 264.7 cells, we have conducted luciferase reporter gene assay and western blotting. RESULTS: We found that FPGE treatment induced macrophage cell proliferation in a dose-dependent manner. FPGE also modulated the expression of NO and pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The activation and phosphorylation levels of nuclear factor kappa B (NF-κB) were increased by FPGE treatment. Moreover, 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of AMP-activated kinase (AMPK), significantly reduced both lipopolysaccharides- and FPGE-induced NF-κB reporter gene activity. CONCLUSIONS: Taken together, our findings suggest that FPGE may be a novel immune-enhancing agent acting via AMPK-NF-κB signaling pathway.

Survey of the Expression Pattern and Immuno Stimulatory Effect of DNA Vaccine Using β-Galactosidase Reporter System in Olive Flounder (Paralichthys olivaceus)

  • Lee Sang-Jun;Hong Suhee;An Kyong-Jin;Kim Young-Ok
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.70-75
    • /
    • 2004
  • The CMV promoter driven lacZ reporter gene (pcDNA-lacZ) was constructed and used for DNA immunization study. The expression of the lacZ gene was confirmed in vitro using RTG-2 cell line before using for in vivo study in olive flounder (Paralichthys olivaceus). In the dose response study, the maximum expression of the lacZ gene was found in the group injected with 5 ${\mu} g$ of the plasmid DNA. Kinetic study showed a significantly increased expression of $\beta-galactosidase$ gene at 7 days after injection. Effects of DNA vaccine on specific and nonspecific immune responses such as antibody and NO production were studied and the significant effect was found in olive flounder injected with 10 and 15 ${\mu} g$ DNA (sub optimal dose for lacZ gene expression). Two pro inflammatory cytokine genes, $IL-l\beta$ and $TNF-\alpha$, were also found to be up regulated in the muscle injected with the plasmid, suggesting an induction of local inflammatory response.

Seeing is Believing: Illuminating the Source of In Vivo Interleukin-7

  • Kim, Grace Yoon-Hee;Hong, Chang-Wan;Park, Jung-Hyun
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Interleukin-7 (IL-7) is an essential cytokine for T cells. However, IL-7 is not produced by T cells themselves such that T cells are dependent on extrinsic IL-7. In fact, in the absence of IL-7, T cell development in the thymus as well as survival of naive T cells in the periphery is severely impaired. Furthermore, modulating IL-7 availability in vivo either by genetic means or other experimental approaches determines the size, composition and function of the T cell pool. Consequently, understanding IL-7 expression is critical for understanding T cell immunity. Until most recently, however, the spatiotemporal expression of in vivo IL-7 has remained obscured. Shortage of such information was partly due to scarce expression of IL-7 itself but mainly due to the lack of adequate reagents to monitor IL-7 expression in vivo. This situation dramatically changed with a recent rush of four independent studies that describe the generation and characterization of IL-7 reporter mice, all utilizing bacterial artificial chromosome transgene technology. The emerging consensus of these studies confirmed thymic stromal cells as the major producers of IL-7 but also identified IL-7 reporter activities in various peripheral tissues including skin, intestine and lymph nodes. Strikingly, developmental and environmental cues actively modulated IL-7 reporter activities in vivo suggesting that IL-7 regulation might be a new mechanism of shaping T cell development and homeostasis. Collectively, the availability of these new tools opens up new venues to assess unanswered questions in IL-7 biology in T cells and beyond.

Wnt-C59 inhibits proinflammatory cytokine expression by reducing the interaction between β-catenin and NF-κB in LPS-stimulated epithelial and macrophage cells

  • Jang, Jaewoong;Song, Jaewon;Sim, Inae;Yoon, Yoosik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.307-319
    • /
    • 2021
  • Dysregulation of the Wnt pathway causes various diseases including cancer, Parkinson's disease, Alzheimer's disease, schizophrenia, osteoporosis, obesity and chronic kidney diseases. The modulation of dysregulated Wnt pathway is absolutely necessary. In the present study, we evaluated the anti-inflammatory effect and the mechanism of action of Wnt-C59, a Wnt signaling inhibitor, in lipopolysaccharide (LPS)-stimulated epithelial cells and macrophage cells. Wnt-C59 showed a dose-dependent anti-inflammatory effect by suppressing the expression of proinflammatory cytokines including IL6, CCL2, IL1A, IL1B, and TNF in LPS-stimulated cells. The dysregulation of the Wnt/β-catenin pathway in LPS stimulated cells was suppressed by WntC59 treatment. The level of β-catenin, the executor protein of Wnt/β-catenin pathway, was elevated by LPS and suppressed by Wnt-C59. Overexpression of β-catenin rescued the suppressive effect of Wnt-C59 on proinflammatory cytokine expression and nuclear factor-kappa B (NF-κB) activity. We found that the interaction between β-catenin and NF-κB, measured by co-immunoprecipitation assay, was elevated by LPS and suppressed by Wnt-C59 treatment. Both NF-κB activity for its target DNA binding and the reporter activity of NF-κB-responsive promoter showed identical patterns with the interaction between β-catenin and NF-κB. Altogether, our findings suggest that the anti-inflammatory effect of Wnt-C59 is mediated by the reduction of the cellular level of β-catenin and the interaction between β-catenin and NF-κB, which results in the suppressions of the NF-κB activity and proinflammatory cytokine expression.

Acetylshikonin Inhibits Human Pancreatic PANC-1 Cancer Cell Proliferation by Suppressing the NF-κB Activity

  • Cho, Seok-Cheol;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.428-433
    • /
    • 2015
  • Acetylshikonin, a natural naphthoquinone derivative compound, has been used for treatment of inflammation and cancer. In the present study, we have investigated whether acetylshikonin could regulate the NF-${\kappa}B$ signaling pathway, thereby leading to suppression of tumorigenesis. We observed that acetylshikonin significantly reduced proliferation of several cancer cell lines, including human pancreatic PANC-1 cancer cells. In addition, acetylshikonin inhibited phorbol 12-myristate 13-acetate (PMA) or tumor necrosis-${\alpha}$ (TNF-${\alpha}$)-induced NF-${\kappa}B$ reporter activity. Proteome cytokine array and real-time RT-PCR results illustrated that acetylshikonin inhibition of PMA-induced production of cytokines was mediated at the transcriptional level and it was associated with suppression of NF-${\kappa}B$ activity and matrix metalloprotenases. Finally, we observed that an exposure of acetylshikonin significantly inhibited the anchorage-independent growth of PANC-1 cells. Together, our results indicate that acetylshikonin could serve as a promising therapeutic agent for future treatment of pancreatic cancer.

Evaluation of the Anti-inflammatory and Immunomodulatory Effects of BSASM Using in vitro Experiments (시험관내에서 천연물제제 BSASM의 항염증 및 면역억제 효능 평가)

  • Lee, Jong-Sung;Park, Yu-Mi;Park, Byung-Hwa;Jung, Kwang-Seon;Kim, Kuk-Hyun;Lee, Won-Hee;Park, Deok-Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.228-232
    • /
    • 2003
  • For effective management of atopic dermatitis, it is important to introduce a therapeutic agent although having the fewest side effects, has the greatest anti- inflammatory effect. In the course of screening anti-inflammatory agents, we obtained BSASM composed of several plant extracts. This study was designed to investigate anti-inflammatory and immunomodulatory effects of BSASM. As a first step, $NF-{\kappa}B$ luciferase reporter assay was performed to know the involvement of BSASM in the production of proinflammatory cytokines because $NF-{\kappa}B$ element has been known to play a major role in expression of cytokine genes such as interleukin-8 (IL-8) or tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$. LPS (lipolysaccharide)-induced $NF-{\kappa}B$ activation was inhibited by BSASM. In addition, we found the fact that BSASM inhibits LPS-induced produced production of IL-8 and $TNF-{\alpha}$ proinflammatory cytokines, indicating BSASM has anti-inflammatory effect. In interleukin-2 (IL-2) luciferase reporter assay in Jurkat T cells, BSASM reduced PHA (Phytohemagglutinin)-induced IL-2 luciferase activity, suggesting the possibility that BSASM might also have an immunomodulatory function in T cell-mediated immune response. Based on these results, we suggest the possibility that BSASM can be introduced to improve symptom of immune-related skin diseases, namely, atopic dermatitis.

Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators

  • Kyurae Kim;Myung-Ho Kim;Ji In Kang;Jong-In Baek;Byeong-Min Jeon;Ho Min Kim;Sun-Chang Kim;Won-Il Jeong
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.89-97
    • /
    • 2024
  • Background: Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods: To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results: Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion: GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.

Study on Immunosuppressive Effects of Rosa Chinensis Jacq. Extract (월계화 추출물의 면역억제 효능 연구)

  • Kim, Kyoung-Shin;Park, Jae-Won;Chae, Suhn-Kee;Kang, Jung-Soo;Kim, Byoung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.459-465
    • /
    • 2011
  • The nuclear factor of activated T cells (NFAT) protein induces transcriptions of cytokine genes including IL-2 for T-cell activation. Normally activation of NFAT is important to induce immune responses but excessive NFAT activation provokes immunopathological reactions such as autoimmunity, transplant rejection, and inflammation. Thus, for the treatment of autoimmune diseases drugs repressing the activation of NFAT have been searched. In this study, immnunosuppressive effects of Rosa chinensis Jacq. extracts identified as a potent NFAT inhibitor from a natural product library were examined. NFAT reporter assay, MTS assay, real time PCR, IL-2 ELISA, MLR, and FACS (Fluorescent Activated Cell Sorting) were used to measure inhibitory immunocyte activities of Rosa chinensis Jacq. The variety of natural products have been screened and some were found to show inhibitory activities against the NFAT transcription factor. Among them, extract of Rosa chinensis Jacq. showed an strong inhibitory effect on the activation of NFAT without affecting cell viability. Levels of IL-2 transcripts as well as IL-2 protein were decreased with treatment of Rosa chinensis Jacq. extract. In addition, immunosuppressive activity of Rosa chinensis Jacq. extract was exhibited in the mixed leukocytes reaction. The increasement of CD4+CD25+ (Treg) immunocyte was also detected in the analysis using FACS after applying Rosa chinensis Jacq. extract. Immunosuppressive effects of the Rosa chinensis Jacq. extracts were clearly demonstrated in the present study. In addition, Rosa chinensis Jacq. extract also positively affected regulatory T cell induction. Further investigations in particular on purification of single substance responsible for the immunosuppressive effects from the extract and analysis on possible actions of the extract in interfering cell signaling and cytokine production will be needed.