• 제목/요약/키워드: Cytochrome P450 3A

검색결과 438건 처리시간 0.031초

Cytochrome P-450 3A4 proximal promoter activity by histone deacetylase inhibitor in HepG2 cell.

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.178-178
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this Is detoxification and metabolizing more than 50% clinical drugs in use. Expression of CYP3A4 is transciptionally regulated by the Pregnenolone X receptor (PXR), of which human form is Steroid and Xenobiotics receptor (SXR). SXR is activated by wide range of endogenous and exogenous compounds, and then induces CYP3A4 gene expression. In the previous study, it has been known that proximal promoter (-864 to +64) does not response to chemical inducers such as pregnenolone 16a-carbonitrile (PCN), Rifampicin, Estrogen in terms of transcription of CYP 3A4 in cultured cells. Here, we developed luciferase reporter gene assay system to detect SXR-based CYP 3A4 transcriptional activity. We have used CYP3A4-Luc plasmid that contains proximal promoter of human CYP3A4 gene upstream of the luciferase gene. We did transient transfection of 3A4-luciferase gene and SXR. In the HepG2 cells transfected with CYP3A4-Luc, when rifampicin treatment was combined with histone deacetylase inhibitor (HDAC Inhibitor), such as Trichostatin A, Hc-toxin and IN 2001 of the luciferase activity was induced 10-20 fold over control.

  • PDF

ROLES OF HUMAN LIVER CYTOCHROMES P450 3A4 AND 1A2 IN THE OXIDATION OF MYRISTICIN

  • Yun, Chul-Ho;Lee, Hye-Suk;Lee, Hee-Yong;Yim, Sung-Kun;Kim, Keon-Hee;Yea, Sung-Su
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.137.1-137.1
    • /
    • 2003
  • Myristicin, 1-allyl-3, 4-methylenedioxy-5-methoxybenzene, is a naturally occurring alkenylbenzene compound. It is found in nutmag, mace, parsley, carrot, black pepper, many natural oils and flavoring agents. The aim of this work was to identify the form(s) of human liver cytochrome P450 (P450) involved in the hepatic transformation of myristicin to its major metabolite, 5-allyl-1-methoxy-2, 3-dihydroxybenzene (M1). (omitted)

  • PDF

Immunohistological expression of cytochrome P450 1A2 (CYP1A2) in the ovarian follicles of prepubertal and pubertal rat

  • Hwang, Jong-Chan;Park, Byung-Joon;Kim, Hwan-Deuk;Baek, Su-Min;Lee, Seoung-Woo;Jeon, Ryoung-Hoon;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Park, Jin-Kyu;Kwon, Young-Sam;Kim, Seung-Joon;Lee, Won-Jae
    • 한국동물생명공학회지
    • /
    • 제35권4호
    • /
    • pp.329-337
    • /
    • 2020
  • Cytochrome P450 1A2 (CYP1A2) is a member of the cytochrome P450 superfamily enzymes in mammals and plays a major role in metabolizing endogenous hormones in the liver. In recent days, CYP1A2 expression has been found in not only the liver but also other tissues including the pancreas and lung. However, little information is available regarding the expression of CYP1A2 in the ovary, in spite of the facts that the ovarian follicle growth and atresia are tightly associated with controls of endocrine hormonal networks. Therefore, the expression of CYP1A2 in the ovaries of prepubertal and pubertal rats was investigated to assess its expression pattern and puberty-related alteration. It was demonstrated that the expression level of CYP1A2 was significantly (p < 0.01) higher in the pubertal ovaries than prepubertal counterparts. At the ovarian follicle level in both groups, whereas CYP1A2 expression was less detectable in the primordial, primary and secondary follicles, the strongly positive expression of CYP1A2 was localized in the granulosa cell layers in the antral and pre-ovulatory follicles. However, the ratio of CYP1A2-positive ovarian follicle was significantly (p < 0.01) higher in the ovary of pubertal group (73.1 ± 3.1%) than prepubertal one (41.0 ± 10.5%). During the Immunofluorescence, expression of CYP1A2 was mainly localized in Fas-positive follicles, indicating the atretic follicles. In conclusion, these results suggested that CYP1A2 expression was mainly localized at the atretic follicular cells and affected by the onset of puberty. Further study is still necessary but we hypothesize that CYP1A2 expresses in the atretic follicles to metabolize residue of the reproductive hormones. These findings may have important implications for the fields of reproductive biology of animals.

In Vitro Inhibitory Effect of Licoricidin on Human Cytochrome P450s

  • Kim, Sunju;O, Heungchan;Kim, Jeong Ah;Lee, Seung Ho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제5권3호
    • /
    • pp.84-88
    • /
    • 2014
  • Licoricidin isolated from Glycyrrhiza uralensis is known to have anticancer, anti-nephritic, anti-Helicobacter pylori, and antibacterial effects. In this study, a cocktail probe assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the modulating effect of licoricidin on cytochrome P450 (CYP) enzymes in human liver microsomes. When licoricidin was incubated at $0-25{\mu}m$ with CYP probes for 60 min at $37^{\circ}C$, it showed potent inhibitory effects on CYP2B6-catalyzed bupropion hydroxylation and CYP2C9-catalyzed diclofenac 4'-hydroxylation with half maximal inhibitory concentration ($IC_{50}$) values of 3.4 and $4.0{\mu}m$, respectively. The inhibition mode of licoricidin was revealed as competitive, dose-dependent, and non-time-dependent, and following the pattern of Lineweaver-Burk plots. The inhibitory effect of licoricidin has been confirmed in human recombinant cDNA-expressed CYP2B6 and 2C9 with $IC_{50}$ values of 4.5 and $0.73{\mu}m$, respectively. In conclusion, this study has shown the potent inhibitory effect of licoricidin on CYP2B6 and CYP2C9 activity could be important for predicting potential herb-drug interactions with substrates that mainly undergo CYP2B- and CYP2C9-mediated metabolism.

Cytochrome P450 and the glycosyltransferase genes are necessary for product release from epipyrone polyketide synthase in Epicoccum nigrum

  • Choi, Eun Ha;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.225-236
    • /
    • 2021
  • The epipyrone (EPN) biosynthetic gene cluster of Epicoccum nigrum is composed of epnC, epnB, and epnA, which encode cytochrome P450 oxidase, glycosyltransferase, and highly reducing polyketide synthase, respectively. Gene inactivation mutants for epnA, epnB, and epnC were previously generated, and it was found that all of them were incapable of producing EPN and any of its related compounds. It was also reported that epnB inactivation abolished epnA transcription, generating ΔepnAB. This study shows that the introduction of native epnC readily restored EPN production in ΔepnC, suggesting that epnC is essential for polyketide release from EpnA and implies that EpnC works during the polyketide chain assembly of EpnA. Introduction of epnC promoter-epnA restored EPN production in ΔepnA. The ΔepnB genotype was prepared by introducing the epnA expression vector into ΔepnAB, and it was found that the resulting recombinant strain did not produce any EPN-related compounds. A canonical epnB inactivation strain was also generated by deleting its 5'-end. At the deletion point, an Aspergllus nidulans gpdA promoter was inserted to ensure the transcription of epnA, which is located downstream of epnB. Examination of the metabolite profile of the resulting ΔepnB mutant via LC-mass spectrometry verified that no EPN-related compound was produced in this strain. This substantiates that C-glycosylation by EpnB is a prerequisite for the release of EpnA-tethered product. In conclusion, it is proposed that cytochrome P450 oxidase and glycosyltransferase work in concert with polyketide synthase to generate EPN without the occurrence of any free intermediates.

Crystal Structure and Biochemical Analysis of a Cytochrome P450 Steroid Hydroxylase (BaCYP106A6) from Bacillus Species

  • Ki-Hwa Kim;Hackwon Do;Chang Woo Lee;Pradeep Subedi;Mieyoung Choi;Yewon Nam;Jun Hyuck Lee;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.387-397
    • /
    • 2023
  • Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11β-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.

기수산물벼룩 Diaphanosoma celebensis의 미세플라스틱 노출에 따른 크기 의존적 Cytochrome P450 유전자의 발현 양상 (Size-dependent Transcriptional Modulation of Genes Involved in Cytochrome P450 Family in the Brackish Water Flea Diaphanosoma celebensis Exposed to Polystyrene Beads)

  • 전민정;유제원;이영미
    • 한국해양생명과학회지
    • /
    • 제8권2호
    • /
    • pp.104-114
    • /
    • 2023
  • 플라스틱은 전세계적으로 사용량이 증가함에 따라 해양 환경으로 유입되는 플라스틱 쓰레기의 양도 꾸준히 증가하고 있으며, 미세플라스틱은 해양 생물에 의해 섭취되어 소화관에 축적됨에 따라 성장과 생식에 유해한 영향을 미친다. Cytochrome P450 (CYP)는 환경 오염물질을 대사하는 해독효소로 알려져 있으나 지각류에서는 그 기능에 대해서는 잘 알려져 있지 않다. 본 연구에서는 기수산 물벼룩 Diaphanosoma celebensis에서 clan 2, 3, 4에 각각 속하는 CYP 유전자 9종(clan 2: CYP370A4, CYP370C5; clan 3: CYP350A1, CYP350C5, CYP361A1; clan 4: CYP4AN-like, CYP4AP2, CYP4AP3, CYP4C33-like1)의 서열에 대해 진화적으로 보존된 서열의 유사도를 분석하고 계통분석을 실시하였다. 또한 3종류의 서로 다른 크기의 polystyrene beads (0.05-, 0.5-, 6-㎛ PS beads; 0.1, 1, and 10 mg/L)에 48시간 노출된 기수산 물벼룩에서 이들 9종의 CYP 유전자의 발현을 real time reverse transcription polymerase chain reaction (RT-PCR)로 분석하였다. 결과적으로 기수산 물벼룩 CYP 유전자는 모두 진화적으로 보존된 motif를 가지고 있으며 계통분석 결과 각각 clan 2, 3, 4에 속하는 것으로 확인되었다. 이는 기능적으로 보존되어 있음을 의미한다. CYP 유전자 중 clan 2에 속하는 CYP370C5와 clan 3에 속하는 CYP360A1, 그리고 clan 4에서는 CYP4C122 유전자의 발현이 0.05-㎛ PS beads에 노출되었을 때 유의하게 증가하는 양상을 보였으며, 이는 이들 유전자가 PS 대사에 관여한다는 것을 의미한다. 본 연구는 미세플라스틱이 해양 무척추 동물에 미치는 생물 영향을 분자적 수준에서 이해하는데 도움이 될 것이다.

Glucose-diethyldithiocarbamate가 흰쥐의 약물 대사 효소에 미치는 영향 연구 (Effect of Glucose-diethyldithiocarbamate on Drug Metabolizing Enzymes in Rats)

  • 최병기;신혜주
    • Biomolecules & Therapeutics
    • /
    • 제8권4호
    • /
    • pp.299-304
    • /
    • 2000
  • The modulation of cytochrome P450(P450) activities and glutathione S-transferase (GST) was investigated after i.p. administration of glucose-diethyldithiocarbamate (Glu-DDTC) to rats. P450 1 A2 and 2El activities were inhibited by 60% 4 hr after the administration of 200 mg Glu-DDTC/kg and those activities were recovered to original levels 24 hr after dosing. In contrast, GST activities were enhanced up to 24 hr after dosing. These results seem to be due to the bifunctional activity of Glu-DDTC. Glu-DDTC acts as an inhibitor of P450 enzymes as well as inducer of GST enzyme. Glu-DDTC inhibited PNP hydroxylation (P450 2El) and ethoxycoumarin O-deethylation (P450 1A2) in a dose-dependent manner up to 200 mg/kg wherease it did not affect testosterone 6$\beta$-hydroxylation (P450 3A) and pentoxyresorufin O-dealkylation (P450 2B) activities. Induction of GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzenen (DCNB) was dependent on the dose of Glu-DDTC and no species difference in the GST induction was seen between rat and mouse. Amoung GST subunits, Ya, Yb1 and partially Yb2 were induced by Glu-DDTC as conjugated by western blotting. The levels Yp, Yk and Yc subunits were not affected by Glu-DDTC treatment. Therefore the enhanced activity of GST toward CDNB and DCNB might be due to the induction of Ya, Ybl and partially Yb2 subunits. In conclusion, Glu-DDTC selectively inhibited P45O 1A2 and P450 2El activities whereas it enhanced Ya, Ybl subunits and partially Yb2 subunits of GST and the antimutagenic activity of this compound might be attributed from the modulation of these enzyme activities in animals.

  • PDF

Dietary Salt Modulates the Adrenocortical Expression of P450 11Beta-hydroxylase in Mice

  • Jahng, Jeong-Won;Youn, Bu-Hyun;Choi, Si-Ho;Moon, Young-Wha
    • Animal cells and systems
    • /
    • 제9권1호
    • /
    • pp.19-25
    • /
    • 2005
  • This study was conducted to determine the effect of dietary salt on the synthesis of glucocorticoids in the adrenal cortex of mice. Mice had ad libitum access to 3% sodium chloride as the only drinking fluid (high salt diet) for either 4 days or 4 weeks. Adrenocortical expression of cytochrome P450 11beta-hydroxylase, a major regulatory enzyme in the biosynthesis of glucocorticoids, was examined by immunohistochemistry and western blot analysis. Ultrastructure of adrenocortical cell and plasma level of corticosterone were analyzed as well. Size and density of lipid droplets in the cortical cell were increased by high salt diet. Four days of high salt diet decreased P450 11beta-hydroxylase in the adrenal cortex, but 4 weeks increased it. Plasma level of corticosterone changed in parallel with the Cortical level of P450 11 beta-hydroxylase. These results suggest that high salt diet may modulate the biosynthesis of glucocorticoids, at least partly, via regulating the expression of P450 11beta-hydroxylase in adrenocortical cells.