• 제목/요약/키워드: Cytochrome P450(CYP)

검색결과 406건 처리시간 0.027초

생강의 주성분인 6-Shogaol이 인체 약물대사효소인 Cytochrome P450에 미치는 영향 (Effects of 6-Shogaol, A Major Component of Zingiber officinale Roscoe, on Human Cytochrome P450 Enzymes in vitro)

  • 김진
    • 한국약용작물학회지
    • /
    • 제24권1호
    • /
    • pp.7-13
    • /
    • 2016
  • Background : Ginger has been extensively used in foods and traditional medicines in Asian countries. Despite its frequent consumption in daily life, the mechanism of potential interactions between ginger components-drug has not been examined. To elucidate the mechanism of governing the effects of 6-shogaol, a primary constituent of dried ginger, on human cytochrome P450 (CYP) isoenzymes an incubation studies were carried out using pooled human liver microsome (HLM). Methods and Results : CYP isoenzyme specific substrate was incubated with multiple concentrations of inhibitor, HLM and cofactors. 6-shogaol showed a potent inhibitory effect on CYP2C9, CYP1A2 and CYP2C19 with half maximal inhibitory concentration ($IC_{50}$) values of 29.20, 20.68 and $18.78{\mu}M$ respectively. To estimate the value of the inhibition constant ($K_i$) and the mode of inhibition, an incubation study with varying concentrations of each CYP isoenzyme-specific probe was performed. 6-shogaol inhibited CYP2C9 and CYP2C19 noncompetitively ($K_i=29.02$ and $19.26{\mu}M$ respectively), in contrast, the inhibition of CYP1A2 was best explained by competitive inhibition ($K_i=6.33{\mu}M$). Conclusions : These findings suggest that 6-shogaol may possess inhibitory effects on metabolic activities mediated by CYP1A2, CYP2C9 and CYP2C19 in humans.

Rubus coreanus Extract Attenuates Acetaminophen Induced Hepatotoxicity; Involvement of Cytochrome P450 3A4

  • Lee, Young-Ik;Whang, Kyung-Eun;Cho, Jin-Sook;Ahn, Byung-Min;Lee, Sang-Bum;Dong, Mi-Sook;Kim, Tae-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.455-460
    • /
    • 2009
  • Foods of plant origin, especially fruits and vegetables, have attracted attention because of their potential benefits to human health. In this report, Rubi Fructus (RF), the dried unripe fruit of Rubus coreanus Miq (Rosaceae) and ellagic acid (EA) purified from RF were used to test their potential hepatoprotective effect against acetaminophen (AAP)-induced hepatotoxicity in rats. RF extract (RFext) and EA reduced the elevated levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) in serum and the content of lipid peroxide in liver by AAP administration, while the increment of the cellular glutathione (GSH) content and the induction of glutathione S-transferase (GST) and glutathione peroxidase (GSH-PX) which were decreased by AAP administration. RFext and EA from RFext did not affect the two major form of cytochrome P450s, cytochrome P450 2E1 (CYP2E1) and cytochrome P450 1A2 (CYP1A2), but downregulated the cytochrome P450 3A4 (CYP3A4) related to the conversion of AAP to N-acetyl-P-benzoquinone imine (NAPQI). These results suggest that RFext and EA from RF exhibit a hepatoprotective effect not only by increasing antioxidant activities but also by down-regulating CYP3A4 in the AAP-intoxicated rat.

Effect of Trichloroethylene on the Induction of Rat Liver Microsomal Enzymes

  • Chang, Sung-Keun;Jeong, Hyo-Seok;Chai, Se-Ok;Kim, Ki-Woong;Park, Sang-Shin
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.237-239
    • /
    • 1997
  • The effects of trichloroethylene (TRI) on the induction of cytochrome P-450 (CYP) and several other related enzymes in Sprague Dawley rats were investigated Rats were treated with TRI 150. 300. 600 mg/kg body weight in corn oil intra peritoneally once a day for 2 days. The total contents of microsomal CYP and cytochrome $b_5\;(b_5)$ decreased with the increase of TRI concentration. but the activity of p-nitrophenol hydroxylase increased with the increase of TRI dosage (p<0.05). Western blot analysis which utilized monoclonal antibodies against CYP2E1 also showed a significant increase in the CYP2E band density. The increase of the activity of pentoxyresolufin-O-deethylase also was observed with the TRI treatment (p<0.05) although there was no significant increase in the cytochrome CYP2B1/2 in Western blotting The TRI did not affect the induction of aryl hydrocarbon hydroxylase. These findings suggest that the CYP2E1 is the primary enzyme which could be induced by TRI treatment in rats.

  • PDF

Heterologous Expression of Novel Cytochrome P450 Hydroxylase Genes from Sebekia benihana

  • Park Nam-Sil;Park Hyun-Joo;Han Kyu-Boem;Kim Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.295-298
    • /
    • 2006
  • Actinomycetes are ubiquitous Gram-positive soil bacteria and a group of the most important industrial microorganisms for the biosynthesis of many valuable secondary metabolites as well as the source of various bioconversion enzymes. Cytochrome P450 hydroxylase (CYP), a hemebinding protein, is known to be involved in the modification of various natural compounds, including polyketides, fatty acids, steroids, and some aromatic compounds. Previously, six different novel CYP genes were isolated from a rare actinomycetes called Sebekia benihana, and they were completely sequenced, revealing significant amino acid similarities to previously known CYP genes involved in Streptomyces secondary metabolism. In the present study, these six CYP genes were functionally expressed in Streptomyces lividans, using an $ermE^{*}$ promoter-containing Streptomyces expression vector. Among six CYP genes, two S. benihana CYP genes (CYP503 and CYP504) showed strong hydroxylation activities toward 7-ethoxycoumarin. Furthermore, the recombinant S. lividans containing both the S. benihana CYP506-ferredoxin genes as well as the S. coelicolor feredoxin reductase gene also demonstrated cyclosporin A hydroxylation activity, suggesting potential application of actinomycetes CYPs for the biocatalysts of natural product bioconversion.

양격산화탕과 태음조위탕 추출물의 in vitro CYP450 효소 활성 억제 효과 (In vitro inhibitory effects of Yangguksanhwa-tang and Taeumjowi-tang on CYP450 isozymes)

  • 하혜경;진성은;신현규
    • 대한예방한의학회지
    • /
    • 제16권3호
    • /
    • pp.129-137
    • /
    • 2012
  • Objective : Herb-drug interactions have become an important issue because of the consumption of herbal remedies has increased in the world. Yangguksanhaw-tang (Liang ge san huo-tang) and Taeumjowi-tang (Tai yin tiao wei-tang) are typical herbal formulas on Sasang constitution medicine (four-constitution medicine). This study was aimed at evaluating the effects of Yangguksanhaw-tang and Taeumjowi-tang on drug metabolizing enzymes, cytochrome P450 (CYP450) isozymes. Methods : Vivid$^{(R)}$ CYP450 Screening Kits were used to measure of CYP3A4, CYP2C19, CYP2D6 and CYP2E1 activities. This method is based on the use of fluorescent CYP450 substrates that are efficiently metabolized by specific CYP450 isozymes to yield a product with altered fluorescent properties. The percent inhibitions of CYP450s by herbal formulas were calculated. Results : Yangguksanhaw-tang inhibited CYP2C19 and CYP2E1 activities higher than that other CYP450 isozymes. The $IC_{50}$ values of CYP2C19 and CYP2E1 were 159.83 ${\mu}g/mL$ and 261.40 ${\mu}g/mL$, respectively. The CYP2E1 activity was inhibited ($IC_{50}=215.17{\mu}g/mL$) higher than that other CYP450 isozymes by Taeumjowi-tang. Conclusions : These results suggest that Yangguksanhaw-tang may inhibit the metabolism of co-administered drugs whose primary route of metabolism is via CYP2C19 or CYP2E1. Taeumjowi-tang could inhibit the metabolism of co-administered drugs, which are substrates for CYP2E1. Therefore, co-administration of the herbal formulas and other conventional drugs should be undertaken with care.

황금의 간세포 보호활성 및 cytochrome P450 발현 조절에 관한 연구 (Study on the Hepatoprotective Effect and Cytochrome P450 Regulation of Scutellaria Radix)

  • 하기태;정상신;김철호;최달영;김준기
    • 동의생리병리학회지
    • /
    • 제22권1호
    • /
    • pp.155-161
    • /
    • 2008
  • Carbon tetrachloride $(CCl_4)-induced$ liver injury depends on a toxic agent that has to be metabolized by the liver NAPDH-cytochrome P450 enzyme system to a highly reactive intermediate. Although several isoforms of cytochrome P450 may metabolize $CC1_4$, attention has been focused largely on the cytochrome P450 2E1 (CYP2E1), which is ethanol-inducible. Alternations in the activity of CYP2E1 affect the susceptibility to hepatic injury from $CC1_4$. In this study, the liver protective effect of the hot water extracts of Scutellaria radix (SR) was investigated. The SR exhibited a hepatoprotective activity against $CCl_4-induced$ liver damage in Chang liver cells. The expression of CYP2E1, measured by RT-PCR and Western blot analysis, was significantly decreased by SR treatment in Chang cells. Based on these findings, it is suggested that hepatoprotective effect of SR possibly related to downregulation of CYP2E1 expression.

Cytochrome P-450 2A6 Inhibitor Based on the Indole Moiety

  • Lee, Soo;Lee, Hyang-Yeol
    • 한국응용과학기술학회지
    • /
    • 제29권3호
    • /
    • pp.435-442
    • /
    • 2012
  • The cytochrome P-450 enzymes (CYP 2A6) regulate many endogenous signaling molecules and drugs. Aryl alkynes such as 2-ethynylnaphthalene are important P450 inhibitors which have been extensively studied as medicines or as an effective chemical probes for profiling mouse liver microsomal P-450. Here we have synthesized indole-based novel P450 inhibitor, 5-ethynyl indole 3, and showed that it has successfully inhibited CYP 2A6 by chemical inhibition reaction. By using HPLC equipped with a photo diode array(PDA) detector, all of the peaks derived from the enzymatic reaction have been characterized.

The Roles of Kupffer Cells in Hepatocellular Dysfunction after Femur Fracture Trauma in Rats

  • Lee, Woo-Yong;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제26권1호
    • /
    • pp.47-52
    • /
    • 2003
  • The aim of this study was to investigate the effects of trauma on alterations in cytochrome P450 (CYP 450)-dependent drug metabolizing function and to determine the role of Kupffer cells in hepatocellular dysfunction. Rats underwent closed femur fracture (FFx) with associated soft-tissue injury under anesthesia, while control animals received only anesthesia. To deplete Kupffer cells in vivo, gadolinium chloride (GdCl$_3$) was injected intravenously via the tail vein at 7.5 mg/kg body wt., 1 and 2 days prior to FFx surgery. At 72 h after FFx, serum alanine aminotransferase (ALT) activity was increased, and this increase was attenuated by GdCl$_3$ pretreatment. Serum aspartate aminotransferase (AST) and lipid peroxidation levels were not changed by FFx. Hepatic microsomal CYP 450 content and aniline p-hydroxylase (CYP 2E1) activity were significantly decreased; decreases that were not prevented by GdC1$_3$. The level of CYP 2B1 activity was decreased by Kupffer cell inactivation, but not by FFx. There were no significant differences in the activities of CYP 1A1, CYP 1A2 and NADPH-CYP 450 reductase among any of the experimental groups. Our findings suggest that FFx trauma causes mild alterations of hepatic CYP 450-dependent drug metabolism, and that Kupffer cells are not essential for the initiation of such injury.

Inhibitory effect of honokiol and magnolol on cytochrome P450 enzyme activities in human liver microsomes

  • Joo, Jeongmin;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • 제4권2호
    • /
    • pp.34-37
    • /
    • 2013
  • Honokiol and magnolol, the major bioactive neolignans of magnolia officinalis, are the most important constituents of the crude drug prescriptions that are used in the therapy of neuroses and various nervous disorders. There have been limited reports on the effects of neolignoid compounds on human cytochrome P450 activity. Therefore, the inhibitory effects of honokiol and magnolol on seven human cytochrome P450 s were evaluated in human liver microsomes. Honokiol and magnolol showed the most potent inhibition of CYP1A2-mediated phenacetin O-deethylase activity ($IC_{50}$ values of 3.5 and 5.4 mM, respectively) among the seven P450s tested. These in vitro data indicate that neolignan compounds can inhibit the activity of CYP1A2 and suggest that these compounds should be examined for potential pharmacokinetic drug interactions in vivo.

Molecular Cloning and mRNA Expression of Cytochrome P450 (CYP450)-related Protein in the Pacific Oyster, Crassostrea gigas: A Water Temperature and Time Study

  • Jo, Pil-Gue;Min, Tae-Sun;An, Kwang-Wook;Choi, Cheol-Young
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.447-452
    • /
    • 2009
  • We cloned the complete complementary DNA (cDNA) of a Pacific oyster (Crassostrea gigas) cytochrome P450 (CYP450)-related protein using rapid amplification of cDNA ends (RACE). The cDNA included a 1470 bp open reading frame that began with the first ATG codon at position 103 bp and ended with a TAG stop codon at position 1573 bp (GenBank accession EF451959). The sequence had all major functional domains and characteristics of previously characterized CYP450 molecules, including the heme-binding region (FGVGRRRCVG) and putative arginine codon (R) integral to enzymatic function. An NCBI/GenBank database comparison to other CYP450 genes revealed that the deduced C. gigas CYP450 amino acid sequence is similar to that of mouse (Mus musculus) CYP450 2D/II (28%, accession AK078880), rabbit (Oryctolagus cuniculus) CYP450 2D/II (28%, AB008785), and white-tufted-ear marmoset (Callithrix jacchus) CYP450 2D (28%, AY082602). Thus, although the C. gigas CYP450 we cloned appears to belong to the 2D type of the CYP450 group, it has low similarity to this type. CYP450 mRNA expression increased over 6 h in C. gigas gills at $30^{\circ}C$ and $10^{\circ}C$, and then decreased, indicating that CYP450 plays an important role in C. gigas exposed to water temperature changes. This finding can be used as a physiological index for Pacific oysters exposed to changing water temperatures.