The Roles of Kupffer Cells in Hepatocellular Dysfunction after Femur Fracture Trauma in Rats

  • Published : 2003.01.01

Abstract

The aim of this study was to investigate the effects of trauma on alterations in cytochrome P450 (CYP 450)-dependent drug metabolizing function and to determine the role of Kupffer cells in hepatocellular dysfunction. Rats underwent closed femur fracture (FFx) with associated soft-tissue injury under anesthesia, while control animals received only anesthesia. To deplete Kupffer cells in vivo, gadolinium chloride (GdCl$_3$) was injected intravenously via the tail vein at 7.5 mg/kg body wt., 1 and 2 days prior to FFx surgery. At 72 h after FFx, serum alanine aminotransferase (ALT) activity was increased, and this increase was attenuated by GdCl$_3$ pretreatment. Serum aspartate aminotransferase (AST) and lipid peroxidation levels were not changed by FFx. Hepatic microsomal CYP 450 content and aniline p-hydroxylase (CYP 2E1) activity were significantly decreased; decreases that were not prevented by GdC1$_3$. The level of CYP 2B1 activity was decreased by Kupffer cell inactivation, but not by FFx. There were no significant differences in the activities of CYP 1A1, CYP 1A2 and NADPH-CYP 450 reductase among any of the experimental groups. Our findings suggest that FFx trauma causes mild alterations of hepatic CYP 450-dependent drug metabolism, and that Kupffer cells are not essential for the initiation of such injury.

Keywords

References

  1. Baker, C. C. and Huynh, T., Immunologic response to injury, In Moore, E. E., Mattox, K. L., Feliciano, D. V. (Eds.). Trauma. Appleton & Lange, Norwalk, CT, pp. 1177-1191 (1996)
  2. Batra, J. K., Venkitasubramanian, T. A., and Raj, H. G., Drug metabolism in experimental tuberculosis. I. Changes in hepatic and pulmonary monooxygenase activities due to infection. Eur. J. Drug Metab. Pharmacol., 12, 109-114 (1987) https://doi.org/10.1007/BF03189884
  3. Bautista, A. P., Meszaros, K., Bojta, J., and Spitzer, J. J., Superoxide anion generation in the liver during the early stage of endotoxemia in rats. J. Leukoc. Biol., 48, 123-128 (1990) https://doi.org/10.1002/jlb.48.2.123
  4. Bone, R. C., Bark, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., and Knaus, W. A., Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. ACCP/SCCM consensus conference committee. Chest, 101, 1644-1655 (1992) https://doi.org/10.1378/chest.101.6.1644
  5. Bone, R. C., Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann. Intern. Med., 125, 680-687 (1996) https://doi.org/10.1001/archinte.125.4.680
  6. Bradham, C. A., Stachlewitsz, R. F., Gao, W., Qian, T., Jayadev, S., Jenkins, G., Hannun, Y., Lemasters, J. J., Thurman, R. G., and Brenner, D. A., Reperfusion after liver transplantation in rats differentially activates the mitogen-activated protein kinases. Hepatology, 25, 1128-1135 (1997) https://doi.org/10.1002/hep.510250514
  7. Brock, R. W., Lawlor, D. K., Harris, K. A., and Potter, R. F., Initiation of remote hepatic injury in the rat: interactions between Kupffer cells, tumor necrosis factor-alpha, and microvascular perfusion. Hepatology, 30, 137-142 (1999) https://doi.org/10.1002/hep.510300132
  8. Brown, A. P., Harkema, J. R., Schultze, A. E., Roth, R. A., and Ganey, P. E., Gadolinium chloride pretreatment protects against hepatic injury but predisposes the lungs to alveolitis after lipopolysaccharide administration. Shock, 7, 186-192 (1997) https://doi.org/10.1097/00024382-199703000-00006
  9. Buege, T. A. and Aust, S. D., Microsomal lipid peroxidation. Methods Enzymol., 52, 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  10. Burke, M. D., Thompson, S., Elcombe, C. R., Halpert, J., Haaparanta, T., and Mayer, R. T., Ethoxy-, pentoxy-, and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem. Biopharmacol., 34, 3337-3345 (1985) https://doi.org/10.1016/0006-2952(85)90355-7
  11. Chen, J. Q., Strom, A., Gustafsson, J. A., and Morgan, E. T., Suppression of the constitutive expression of cytochrome P-450 2C11 by cytokines and interferons in primary cultures of rat hepatocytes: comparison with induction of acute-phase genes and demonstration that CYP2C11 promoter sequences are involved in the suppressive response to interleukins 1 and 6. Mol. Pharmacol., 47, 940-947 (1995)
  12. Chun, K., Zhang, J., Biewer, J., and Clemens, M. G., Microcirculatory failure determines lethal hepatocyte injury in ischemic/reperfused rat livers. Shock, 1, 3-9 (1994)
  13. Cutrin, J. C., Llesuy, S., and Boveris A., Primary role of Kupffer cell-hepatocyte communication in the expression of oxidative stress in the post-ischemic liver. Cell Biochem. Funct., 16, 65-72 (1998) https://doi.org/10.1002/(SICI)1099-0844(199803)16:1<65::AID-CBF772>3.0.CO;2-U
  14. Deitch, E. A., Multiple organ failure. Ann. Surg., 216, 117-134 (1992) https://doi.org/10.1097/00000658-199208000-00002
  15. Huynh, T., Baker, C. C., Bracey, L. W., and Lemasters, J. J., Adaptive Kupffer cell alterations after femur fracture trauma in rats. Am. J. Physiol., 272, G1457-G1462 (1997) https://doi.org/10.1152/ajpcell.1997.272.5.C1457
  16. Huynh, T., Lemasters, J. J., Bracey, L. W., and Baker, C. C., Proinflammatory Kupffer cell alteration after femur fracture trauma and sepsis in rats. Shock, 14, 555-560 (2000) https://doi.org/10.1097/00024382-200014050-00010
  17. Kono, H., Bradford, B. U., Rusyn, I., Fujii, H., Matsumoto, Y., Yin, M., and Thurman, R. G., Development of an intragastric enteral model in the mouse: studies of alcohol-induced liver disease using knockout technology. J. Hepatobiliary Pancreat. Surg., 7, 395-400 (2000) https://doi.org/10.1007/s005340070034
  18. Koo, D. J., Chaudry, I. H., and Wang, P., Kupffer cells are responsible for producing inflammatory cytokines and hepatocellular dysfunction during early sepsis. J. Surg. Res., 83, 151-157 (1999) https://doi.org/10.1006/jsre.1999.5584
  19. Lee, S. -M., Park, M. -J., Cho, T. -S., and Clemens, M. G., Hepatic injury and lipid peroxidation during ischemia and reperfusion. Shock, 13, 279-284 (2000) https://doi.org/10.1097/00024382-200004000-00005
  20. Morgan, E. T., Suppression of constitutive cytochrome P450 gene expression in liver of rats undergoing an acute phase response to lipopolysaccharide. Mol. Pharmacol., 36, 699-707 (1989)
  21. Nielsen, B. W., Mukaida, N., and Matsushima, K., Macrophages as producers of chemotactic proinflammatory cytokines. Immunol. Ser., 60, 131-142 (1994)
  22. Omura, T. and Sato, R., The carbon monoxide binding pigment of liver microsomes. J. Biol. Chem., 239, 2370-2379 (1964)
  23. Pohl, R. J. and Fouts, J. R., A rapid method for assaying the metabolism of 7-ethoxyresorufin by microsomal subcellular fractions. Anal. Biochem., 107, 150-155 (1980) https://doi.org/10.1016/0003-2697(80)90505-9
  24. Renton, K. W., Factors affecting drug biotransformation. Clin. Biochem., 19, 72-75 (1986) https://doi.org/10.1016/S0009-9120(86)80051-0
  25. Rivera, C. A., Bradford, B. U., Hunt, K. J., Adachi, Y., Schrum, L. W., Koop, D. R., Burchardt, E. R., Rippe, R. A., and Thurman R. G., Attenuation of $CCI_4$-induced hepatic fibrosis by $GdCI_3$ treatment or dietary glycine. Am. J. Physiol. Gastrointest. Liver Physiol., 281, G200-G207 (2001) https://doi.org/10.1152/ajpgi.2001.281.1.G200
  26. Schenkman, J. B., Remmer, H., and Estabrook, R. W., Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol., 3, 113-123 (1967)
  27. Schirmer, W. J., Schirmer, J. M., Townsend, M. C., and Fry, D. E., Femur fracture with associated soft-tissue injury produces hepatic ischemia. Arch. Surg., 123, 412-415 (1988) https://doi.org/10.1001/archsurg.1988.01400280018002
  28. Sewer, M. B. and Morgan, E. T., Down-regulation of the expression of three major rat liver cytochrome P450s by endotoxin in vivo occurs independently of nitric oxide production. J. Pharmacol. Exp. Ther., 287, 352-358 (1998)
  29. Shedlofsky, S. I., Swim, A. T., Robinson, J. M., Gallichio, V. S., Cohen, P. A., and McClain, C. J., Interleukin-1 (IL-1) depresses cytochrome P-450 levels and activities in mice. Life Sci., 40, 2331-2336 (1987) https://doi.org/10.1016/0024-3205(87)90506-6
  30. Takemura, S., Minamiyama, Y., Inaoka, S., Funae, Y., Hirohashi, K., Inoue, M., and Kinoshita, H., Hepatic cytochrome P450 is directly inactivated by nitric oxide, not by inflammatory cytokines, in the early phase of endotoxemia. J. Hepatol., 30, 1035-1044 (1999) https://doi.org/10.1016/S0168-8278(99)80257-8
  31. Vermillion, J. and Coon, M. J., Purified liver microsomal NADPH-cytochrome P-450 reductase. J. Biol. Chem., 253, 8812-8819 (1978)
  32. Wu, J. Z., Ogle, C. K., Fischer, J. E., Warden, G. D., and Ogle, J. D., The mRNA expression and in vitro production of cytokines and other proteins by hepatocytes and Kupffer cells following thermal injury. Shock, 3, 268-273 (1995) https://doi.org/10.1097/00024382-199504000-00004