• 제목/요약/키워드: Cyprus

검색결과 62건 처리시간 0.022초

기-고체 반응모델을 이용한 Cyprus탄의 CO2 저온촉매가스화 반응거동 (Kinetic of Catalytic CO2 Gasification for Cyprus Coal by Gas-Solid Reaction Model)

  • 황순철;이도균;김상겸;이시훈;이영우
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.653-662
    • /
    • 2015
  • 일반적으로 가스화는 고온($1300{\sim}1400^{\circ}C$), 고압(30~40 bar)에서 공정이 가동되나 이를 유지하기 위해 과도한 에너지가 사용된다. 본 연구에서는 공정 온도를 줄이기 위해 알칼리 촉매 중 $K_2CO_3$$Na_2CO_3$을 저등급의 사이프러스(Cyprus) 탄에 첨가하였고, 이산화탄소 분위기에서 가스화시켰을 때 나타나는 반응특성을 연구하였다. 열중량분석기를 활용하여 촉매의 함량, 촉매의 종류, 온도를 변수로서 가스화 공정조건을 결정하였다. 고체상 물리적 혼합법으로 촉매를 도입 시, 7 wt%의 $Na_2CO_3$가 첨가된 시료가 원탄보다 높은 활성을 보였다. 탄소전환율 거동을 예측하기 위해 시료별로 반응모델을 적용해본 결과, volumetric reaction model(VRM)이 탄소전환율 거동을 가장 잘 묘사하였다. 7 wt%의 $Na_2CO_3$을 첨가한 사이프러스 탄의 활성화 에너지는 63 kJ/mol로 원탄보다 낮으며, 이는 이산화탄소 분위기에서 석탄가스화의 반응성을 향상시킨다는 것을 보여주었다.

1 T/D급 습식 분류상 석탄가스화기에서의 석탄가스화 특성연구 (Experimental Study on the Characteristics of Coal Gasification by 1 T/D BSU Coal-Slurry Entrained Gasifier)

  • 박태준;김재호;손성근;이재구;홍재창;김용구;최영찬
    • 에너지공학
    • /
    • 제8권4호
    • /
    • pp.553-559
    • /
    • 1999
  • 1 T/D 급 습식 분류상 석탄가스화 장치를 이용하여 외국의 각종탄에 대한 가스화 실험을 통해, 1) 석탄가스화를 위한 적절한 탄종을 선정하고 , 2) 탄종에 따른 가스화 반응식 데이터베이스를 구축하며, 3) 가스화 반응기에서 예상되는 문제점을 사전에 제거하고, 4) 습식분류상 가스화기술에 대한 요소기술 및 운소기술 및 운전기술을 확보하므로서 향후 IGCC Plant 설계, 건설시에 시행착오를 줄이는데 크게 기여하고저 하였다. 가스화 실험을 위해 미국산 Cyprus 및 Alaska 탄이 사용되었으며 , 실험결과 Cyprus 및 Alaska 탄은 국내발전용 탄인역청탄 및 갈탄으로 비교적 반응성은 양호하였으며, slag 의 용융온도 또한 약 129$0^{\circ}C$로서 비교적 낮게 나타났다. 석탄슬러리 농도는 Cyprus 탄의 경우 58, 62 , 65 %로 유지하였으며 가스화장치에 공급하는데는 점도 상승에 따른 큰 문제점이 없었으나, Alaska 탄의 경우엔 수분함량이 많아 슬러리 제조 및 feeding 상의 문제점을 고려하여 58%로 운전하였으며 , 60%이상 슬러리 농도를 유지할수 없었다. O2 coal ratio는 0.6에서 1.2까지 유지하면서 운전하였으며 갈탄인 Alaska탄의 경우 수분함량이 많아 산소소모가 많은 것으로 나타났다. 두 탄종에 대한 가스화실험을 통해, 생성된 합성가스(H2+ CO)는 40-62% 로나타났으며 , 생성가스의 열량은 1, 400-2,050kcal/N㎥(HHV)로 분석되었다.

  • PDF

A class of actuated deployable and reconfigurable multilink structures

  • Phocas, Marios C.;Georgiou, Niki;Christoforou, Eftychios G.
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.189-210
    • /
    • 2022
  • Deployable structures have the ability to shift from a compact state to an expanded functional configuration. By extension, reconfigurability is another function that relies on embedded computation and actuators. Linkage-based mechanisms constitute promising systems in the development of deployable and reconfigurable structures with high flexibility and controllability. The present paper investigates the deployment and reconfigurability of modular linkage structures with a pin and a sliding support, the latter connected to a linear motion actuator. An appropriate control sequence consists of stepwise reconfigurations that involve the selective releasing of one intermediate joint in each closed-loop linkage, effectively reducing it to a 1-DOF "effective crank-slider" mechanism. This approach enables low self-weight and reduced energy consumption. A kinematics and finite-element analysis of different linkage systems, in all intermediate reconfiguration steps of a sequence, have been conducted for different lengths and geometrical characteristics of the members, as well as different actuation methods, i.e., direct and cable-driven actuation. The study provides insight into the impact of various structural typological and geometrical factors on the systems' behavior.

Application of shape memory alloy prestressing devices on an ancient aqueduct

  • Chrysostomou, Christis Z.;Stassis, Andreas;Demetriourder, Themos;Hamdaoui, Karim
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.261-278
    • /
    • 2008
  • The results of the application of shape memory alloy (SMA) prestressing devices on an aqueduct are presented in this paper. The aqueduct was built in 1747 to provide water to the city of Larnaca and to its port. Because of its importance to the cultural heritage of Cyprus, the aqueduct has been selected as one of the case-study monuments in the project Wide-Range Non-Intrusive devices toward Conservation of Historical Monuments in the Mediterranean Area (WIND-CHIME). The Department of Antiquities of Cyprus, acting in a pioneering way, have given their permission to apply the devices in order to investigate their effectiveness in providing protection to the monument against probable catastrophic effects of earthquake excitation. The dynamic characteristics of the structure were determined in two separate occasions and computational models were developed that matched very closely the dynamic characteristics of the structure. In this paper the experimental setup and the measured changes in the dynamic characteristics of the monument after the application of the SMA devices are described.

Numerical investigation of potential mitigation measures for poundings of seismically isolated buildings

  • Polycarpou, Panayiotis C.;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.1-24
    • /
    • 2011
  • During very strong earthquakes, seismically isolated buildings may experience large horizontal relative displacements, which may lead to poundings if an insufficiently wide clearance is provided around the building. This paper investigates, through numerical simulations, the effectiveness of using rubber bumpers, which could be attached at locations where it is likely to have impacts, in order to act as shock-absorbers. For the simulation of the dynamic behavior of such rubber bumpers during impacts, a nonlinear force-based impact model, which takes into account the finite thickness of the rubber bumpers, has been developed. Subsequently, a series of parametric analyses are performed to assess the effect of the gap size, the earthquake characteristics and the thickness, compressive capacity and damping of the bumpers. The stiffness of the moat wall is also parametrically considered during poundings of a seismically isolated building, as another potential mitigation measure for poundings of seismically isolated buildings.

Performance investigation of palm kernel shell ash in high strength concrete production

  • Mosaberpanah, Mohammad A.;Amran, Y.H. Mugahed;Akoush, Abdulrahman
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.577-585
    • /
    • 2020
  • By the increasing amount of waste materials, it eventually dumped into the environment and covering a larger area of the landfill which cause several environmental pollution problems. The utilization of Palm Kernal Shell Ash (PKSA) in concrete might bring a great benefit in addressing both environmental and economic issues. This article investigates the effect of PKSA as a partial cement replacement of High Strength Concrete (HSC). Several concrete mixtures were prepared with different PKSA of 0%, 10%, 20%, and 30% replaced by the cement mass. This procedure was replicated twice for the two different target mean strengths of 40 MPa and 50 MPa. The mixtures were prepared to test different fresh and hardened properties of HSC including slump test, the compressive strength of 3, 7, 14, 28, and 90 days, flexural strength of 28-days, drying shrinkage, density measurement, and sorptivity. It was observed 10% PKSA replacement as optimum percentage which reduced the drying shrinkage, sorptivity, and density and improved the late-age compressive strength of concrete.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • 제14권1호
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Stability assessment of soil slopes in three dimensions: The effect of the width of failure and of tension crack

  • Pantelidis, Lysandros;Gravanis, Elias;Gkotsis, Konstantinos-Paraskevas
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.319-328
    • /
    • 2020
  • This paper investigates the effect of the width of failure and tension crack (TC) on the stability of cohesive-frictional soil slopes in three dimensions. Working analytically, the slip surface and the tension crack are considered to have spheroid and cylindrical shape respectively, although the case of tension crack having planar, vertical surface is also discussed; the latter was found to return higher safety factor values. Because at the initiation of a purely rotational slide along a spheroid surface no shear forces develop inside the failure mass, the rigid body concept is conveniently used; in this respect, the validity of the rigid body concept is discussed, whilst it is supported by comparison examples. Stability tables are given for fully drained and fully saturated slopes without TC, with non-filled TC as well as with fully-filled TC. Among the main findings is that, the width of failure corresponding to the minimum safety factor value is not always infinite, but it is affected by the triggering factor for failure (e.g., water acting as pore pressures and/or as hydrostatic force in the TC). More specifically, it was found that, when a slope is near its limit equilibrium and under the influence of a triggering factor, the minimum safety factor value corresponds to a near spherical failure mechanism, even if the triggering factor (e.g., pore-water pressures) acts uniformly along the third dimension. Moreover, it was found that, the effect of tension crack is much greater when the stability of slopes is studied in three dimensions; indeed, safety factor values comparable to the 2D case are obtained.

Prevalence and Forms of Workplace Bullying Among Health-care Professionals in Cyprus: Greek Version of "Leymann Inventory of Psychological Terror" Instrument

  • Zachariadou, Theodora;Zannetos, Savvas;Chira, Stella Elia;Gregoriou, Sofia;Pavlakis, Andreas
    • Safety and Health at Work
    • /
    • 제9권3호
    • /
    • pp.339-346
    • /
    • 2018
  • Background: Workplace bulling is a pervasive phenomenon with negative consequences for the health of victims and the productivity of organizations. The aim of this study was to measure the prevalence and forms of workplace bullying among employees working at the public health-care sector of Cyprus using the Greek version of Leymann Inventory of Psychological Terror (LIPT) instrument. Methods: A translation process was followed from the French to the Greek version of LIPT questionnaire. Test-retest reliability expressed by Pearson's correlation coefficient was 0.98 indicating excellent reproducibility. Internal consistency reliability assessed by Cronbach ${\alpha}$ coefficient was 0.87 suggesting high reliability. LIPT instrument was distributed among 403 employees working at the primary health-care setting and at the largest public hospital of Cyprus with response rate of 73.4%. Results: Women comprised the majority of participants (71.4%). Mean age was 43.3 years. Prevalence of workplace bulling according to Leymann's definition was 5.9%. Most common forms of bullying were "Being continuously interrupted" (17.2%) and "continuously being given new work assignments" (13.5%). Women were significantly more often exposed to at least one mobbing behavior than men within the previous year (49% vs. 35.7%, p = 0.038), whereas nurses were significantly exposed to at least one mobbing behavior as compared to physicians (53.3% vs. 31.4%, p = 0.004). Conclusion: This was the first study that examined the prevalence of workplace bullying in the public health-care sector by elaborating the Greek version of LIPT instrument. Results showed that workplace bullying is a common and complex phenomenon among health-care organizations.