Browse > Article
http://dx.doi.org/10.12989/acd.2022.7.3.189

A class of actuated deployable and reconfigurable multilink structures  

Phocas, Marios C. (Department of Architecture, Faculty of Engineering, University of Cyprus)
Georgiou, Niki (Department of Architecture, Faculty of Engineering, University of Cyprus)
Christoforou, Eftychios G. (Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Cyprus)
Publication Information
Advances in Computational Design / v.7, no.3, 2022 , pp. 189-210 More about this Journal
Abstract
Deployable structures have the ability to shift from a compact state to an expanded functional configuration. By extension, reconfigurability is another function that relies on embedded computation and actuators. Linkage-based mechanisms constitute promising systems in the development of deployable and reconfigurable structures with high flexibility and controllability. The present paper investigates the deployment and reconfigurability of modular linkage structures with a pin and a sliding support, the latter connected to a linear motion actuator. An appropriate control sequence consists of stepwise reconfigurations that involve the selective releasing of one intermediate joint in each closed-loop linkage, effectively reducing it to a 1-DOF "effective crank-slider" mechanism. This approach enables low self-weight and reduced energy consumption. A kinematics and finite-element analysis of different linkage systems, in all intermediate reconfiguration steps of a sequence, have been conducted for different lengths and geometrical characteristics of the members, as well as different actuation methods, i.e., direct and cable-driven actuation. The study provides insight into the impact of various structural typological and geometrical factors on the systems' behavior.
Keywords
deployable structures; effective crank-slider method; finite-element analysis; linkage structures; motion planning; reconfigurable structures;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Melancon, D., Gorissen, B., Garcia-Mora, C.J., Hoberman, C. and Bertoldi, K. (2021), "Multistable inflatable origami structures at the metre scale", Nature, 592, 545-550. https://doi.org/10.1038/s41586-021-03407-4.   DOI
2 Norton, R. (2008), Design of Machinery, McGraw-Hill, New York, U.S.A.
3 Park, F.C. and Kim, J.W. (1999), "Singularity analysis of closed kinematic chains", J. Mech. Des., 121(1), 32-38. https://doi.org/10.1115/1.2829426.   DOI
4 Pellegrino, S. (2001), "Deployable structures", CIMS Int. Center Mech. Sci., 412. http://doi.org/10.1007/978-3-7091-2584-7.   DOI
5 Gantes, C.J. (2001), Deployable Structures: Analysis and Design, WIT Press, Southampton, U.K.
6 Phocas, M.C., Christoforou, E.G. and Dimitriou, P. (2020), "Kinematics and control approach for deployable and reconfigurable rigid bar linkage structures", Eng. Struct., 208, 110310. https://doi.org/10.1016/j.engstruct.2020.110310.   DOI
7 Perez-Valcarcel, J., Munoz-Vidal, M., Suarez-Riestra, F., Lopez-Cesar, I.R. and Freire-Tellado, M.J. (2021), "A new system of deployable structures with reciprocal linkages for emergency buildings", J. Build. Eng., 33, 101609. https://doi.org/10.1016/j.jobe.2020.101609.   DOI
8 Muller, A. (2005), "Internal preload control of redundantly actuated parallel manipulators - Its application to backlash avoiding control", IEEE T. Robot., 21(4), 668-677. https://doi.org/10.1109/TRO.2004.842341.   DOI
9 Phukaokaew, W., Sleesongsom, S., Panagant, N. and Bureerat, S. (2019), "Synthesis of four-bar linkage motion generation using optimization algorithms", Adv. Comput. Des., 4(3), 197-210. https://doi.org/10.12989/acd.2019.4.3.197.   DOI
10 Fontes, J.V. and da Silva, M.M. (2016), "On the dynamic performance of parallel kinematic manipulators with actuation and kinematic redundancies", Mech. Mach. Theory, 103, 148-166. https://doi.org/10.1016/j.mechmachtheory.2016.05.004.   DOI
11 Phocas, M.C., Christoforou, E.G. and Matheou, M. (2015), "Design, motion planning and control of a reconfigurable hybrid structure", Eng. Struct., 101(10), 376-385. https://doi.org/10.1016/j.engstruct.2015.07.036.   DOI
12 Phocas, M.C., Alexandrou, K. and Athini, S. (2019), "Design and analysis of an adaptive hybridstructure of linearly interconnected scissor-like and cable bending-active components", Eng. Struct., 192, 156-165. https://doi.org/10.1016/j.engstruct.2019.04.102.   DOI
13 Phocas, M.C., Kontovourkis, O. and Matheou, M. (2012), "Kinetic hybrid structure development and simulation", Int. J. Arch. Comp., 10(1), 67-86. https://doi.org/10.1260%2F1478-0771.10.1.67.   DOI
14 Phocas, M.C., Matheou, M., Muller, A. and Christoforou, E.G. (2019), "Reconfigurable modular bar structure", J. Int. Assoc. Shell Spatial Struct., 60(1), 78-89. https://doi.org/10.20898/j.iass.2019.199.028.   DOI
15 Rhode-Barbarigos, L. (2012), "An active deployable structure", Ph.D. Dissertation, EPFL, Lausanne, Switzerland.
16 Richard Liew, J.Y., Vu, K.K. and Krishnapillai, A. (2008), "Recent development of deployable tension-strut structures", Adv. Struct. Eng., 11(6), 599-614. https://doi.org/10.1260%2F136943308787543630.   DOI
17 Rivas-Adrover, E. (2018), "A new hybrid type of deployable structure: Origami-scissor hinged", J. Int. Assoc. Shell Spatial Struct., 59(3), 183-190. https://doi.org/10.20898/j.iass.2018.197.010.   DOI
18 Pugh, A. (1976), An Introduction to Tensegrity, University of California Press, Berkeley, U.S.A.
19 Adam, B. and Smith, I.F.C. (2008), "Active tensegrity: A control framework for an adaptive civilengineering structure", Comp. Struct., 86(23-24), 2215-2223. https://doi.org/10.1016/j.compstruc.2008.05.006.   DOI
20 Chen, Y., Feng, J. and Sun, Q. (2018), "Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry", Int. J. Solids Struct., 139-140, 1-14. https://doi.org/10.1016/j.ijsolstr.2017.05.008.   DOI
21 Chen, Y., Fan, L., Bai, Y., Feng, J. and Sareh, P. (2020), "Assigning mountain-valley fold lines of flatfoldable origami patterns based on graph theory and mixed-integer linear programming", Comput. Struct., 239, 106328. https://doi.org/10.1016/j.compstruc.2020.106328.   DOI
22 Christoforou, E.G., Muller, A., Phocas, M.C., Matheou, M. and Arnos, S. (2015), "Design and control concept for reconfigurable architecture", J. Mech. Des., 137, 042302. https://doi.org/10.1115/1.4029617.   DOI
23 Djouadi, A., Motro, R., Pons, J.C. and Crosnier, B. (1998), "Active control of tensegrity systems", Aerospace Eng., 11, 37-44. https://doi.org/10.1061/(ASCE)0893-1321(1998)11:2(37).   DOI
24 Engel, H. (2009), Structure Systems, Hatje Cantz, Stuttgart, Germany.
25 Escrig, F. (1985), "Expandable space structures", Int. J. Space Struct., 2(1), 79-91. https://doi.org/10.1177%2F026635118500100203.   DOI
26 Gan, W.W. and Pellegrino, S. (2003), "Closed-loop deployable structures", Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia, U.S.A., April. https://doi.org/10.2514/6.2003-1450.   DOI
27 Schlaich, J., Bergermann, R., Boegle, R., Cachola, A. and Flagge, S.P. (2005), Light Structures, Prestel, New York, U.S.A.
28 Roovers, K. and De Temmerman, N. (2017), "Deployable scissor grids consisting of translational units", Int. J. Solids Struct., 121, 45-61. https://doi.org/10.1016/j.ijsolstr.2017.05.015.   DOI
29 Saitoh, M. and Okada, A. (1999), "The role of string in hybrid string structure", Eng. Struct., 21, 756-769. https://doi.org/10.1016/S0141-0296(98)00029-7.   DOI
30 Schenk, M., Guest, S.D. and Herder, J.L. (2007), "Zero stiffness tensegrity structures", Int. J. Solids Struct., 44(20), 6569-6583. https://doi.org/10.1016/j.ijsolstr.2007.02.041.   DOI
31 Snelson, K. (1965), Continuous Tension, Discontinuous Compression Structures, U.S. Patent No. 3,169,611, Washington, D.C., U.S.A.
32 Chen, Y., Yan, J., Feng, J. and Sareh, P. (2021), "PSO-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices", J. Mech. Des., 143(1), 011703. https://doi.org/10.1115/1.4047437.   DOI
33 Alegria Mira, L., Filomeno Coelho, R., Thrall, A.P. and De Temmerman, N. (2015), "Parametric evaluation of deployable scissor arches", Eng. Struct., 99, 479-491. https://doi.org/10.1016/j.engstruct.2015.05.013   DOI
34 Tibert, G. (2002), "Deployable tensegrity structures for space applications", Ph.D. Dissertation, Stockholm Royal Institute of Technology, Stockholm, Switzerland.
35 You, Z. and Pellegrino, S. (1997), "Foldable bar structures", Int. J. Solids Struct., 15(34), 1825-1847. https://doi.org/10.1016/S0020-7683(96)00125-4.   DOI
36 Muller, A. (2013), "On the terminology and geometric aspects of redundantly actuated parallel manipulators", Robotica, 31(1), 137-147. https://doi.org/10.1017/S0263574712000173.   DOI
37 Bel Hadj Ali N., Rhode-Barbarigos L. and Smith I.F.C. (2011), "Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm", Int. J. Solids Struct., 48(5), 637-647. https://doi.org/10.1016/j.ijsolstr.2010.10.029.   DOI
38 Chen, Y., Fan, L. and Feng, J. (2017), "Kinematic of symmetric deployable scissor-hinge structures with integral mechanism mode", Comput. Struct., 191, 140-152. https://doi.org/10.1016/j.compstruc.2017.06.006.   DOI
39 Chen, Y., Peng, R. and You, Z. (2015), "Origami of thick panels", Science, 349(6246), 396-400. https://doi.org/10.1126/science.aab2870.   DOI
40 Chen, Y. and You, Z. (2008), "On mobile assemblies of Bennett linkages", Proceedings of the Royal Society of Automotive Engineers, 464(2093), 1275-1293. https://doi.org/10.1098/rspa.2007.0188.   DOI
41 Doroftei, I., Oprisan, C. and Popescu, A. (2014), "Deployable structures for architectural applications - A short review", Appl. Mech. Mat., 658, 233-240. https://doi.org/10.4028/www.scientific.net/AMM.658.233.   DOI
42 Georgiou, N. and Phocas, M.C. (2020), "Kinematics analysis of deployable and reconfigurable bar-linkage structures", Proceedings of the 2020 Structures Congress, Structures 20, 2020 International Conference on Advances in Computational Design, Seoul, Korea, August.
43 Li, S., Fang, H., Sadeghi, S., Bhovad, P. and Wang, K.W. (2019), "Architected origami materials: How folding creates sophisticated mechanical properties" Adv. Mater., 31(5), 1805282. https://doi.org/10.1002/adma.201805282.   DOI
44 Thrall, A.P., Adriaenssens, S., Paya-Zaforteza, I. and Zoli, T.P. (2012), "Linkage-based movable bridges: Design methodology and three novel forms", Eng. Struct., 37, 214-223. https://doi.org/10.1016/j.engstruct.2011.12.031.   DOI
45 Christoforou, E.G., Phocas, M.C., Matheou, M. and Muller, A. (2019), "Experimental implementation of the 'effective 4-bar method' on a reconfigurable articulated structure", Struct., 20, 157-165. https://doi.org/10.1016/j.istruc.2019.03.009.   DOI
46 Hanaor, A. and Levy, R. (2001), "Evaluation of deployable structures for space enclosures", Int. J. Space Struct., 16(4), 211-229. https://doi.org/10.1260%2F026635101760832172.   DOI
47 Gogu, G. (2005), "Mobility of mechanisms: a critical review", Mech. Mach. Theory, 40, 1068-1097. https://doi.org/10.1016/j.mechmachtheory.2004.12.014.   DOI
48 Hanaor, A. (1998), Tensegrity. Theory and application, Beyond the Cube, John Wiley & Sons, New York, U.S.A.
49 Hoberman, C. (1993), "Unfolding architecture: An object that is identically a structure and a mechanism", Arch. Des., 63, 53-59.
50 Jensen, F.V. (2005), "Concepts for retractable roof structures", Ph.D. Dissertation, University of Cambridge, Cambridge, U.K. https://doi.org/10.17863/CAM.14143.   DOI
51 Lin, F., Chen, C., Chen, J. and Chen, M. (2019), "Modelling and analysis for a cylindrical net-shell deployable mechanism", Adv. Struct. Eng., 22(15), 3149-3160. https://doi.org/10.1177%2F1369433219859400.   DOI
52 Matheou, M., Phocas, M.C., Christoforou, E.G. and Muller, A. (2018), "On the kinetics of reconfigurable hybrid structures", J. Build. Eng., 17, 32-42. https://doi.org/10.1016/j.jobe.2018.01.013.   DOI
53 Moored, K.W. and Bart-Smith, H. (2009), "Investigation of clustered actuation in tensegrity structures", Int. J. Solids Struct.,46(18), 3272-3281. https://doi.org/10.1016/j.ijsolstr.2009.04.026.   DOI
54 Akgun, Y., Gantes, C.J., Kalochairetis, K. and Kiper, G. (2010), "A novel concept of convertible roofs with high transformability consisting of planar scissor-hinge structures", Eng. Struct., 32, 2873-2883. https://doi.org/10.1016/j.engstruct.2010.05.006.   DOI
55 Krishnan, S. and Liao, Y. (2020), "Geometric design of deployable spatial structures made of three-dimensional angulated members", J. Archit. Eng., 26(3), 04020029. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000416.   DOI
56 Maden, F., Korkmaz, K. and Akgun, Y. (2011), "A review of planar scissor structural mechanisms: Geometric principles and design methods", Arch. Sci. Rev., 54, 246-257. https://doi.org/10.1080/00038628.2011.590054.   DOI
57 Acharyya, S.K. and Mandal, M. (2009), "Performance of EAs for four-bar linkage synthesis", Mech. Mach. Theory, 44, 1784-1794. https://doi.org/10.1016/j.mechmachtheory.2009.03.003.   DOI
58 Akgun, Y., Gantes, C.J., Sobek, W., Korkmaz, K. and Kalochairetis, K. (2011), "A novel adaptive spatial scissor-hinge structural mechanism for convertible roofs", Eng. Struct., 33(4), 1365-1376. https://doi.org/10.1016/j.engstruct.2011.01.014.   DOI
59 Motro, R., Bouderbala, M., Lesaux, C. and Cevaer, F. (2001), Foldable Tensegrities, Deployable Structures, Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-2584-7_11.   DOI
60 Moored, K.W., Kemp, T.H., Hole, N.E. and Bart-Smith, H. (2011), "Analytical predictions, optimization and design of a tensegrity-based artificial pectoral fin", Int. J. Solids Struct., 48(22-23), 3142-3159. https://doi.org/10.1016/j.ijsolstr.2011.07.008.   DOI