• Title/Summary/Keyword: Cylindrical magnet

Search Result 56, Processing Time 0.021 seconds

Study on magnetic field mapping within cylindrical center volume of general magnet

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.30-36
    • /
    • 2016
  • For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

Quantitative Approach to the Magnetic Force of a Cylindrical Permanent Magnet Acting on a Ferromagnetic Object (원형 막대자석이 강자성 물체에 작용하는 자기력에 대한 정량적 접근)

  • Hyun, Donggeul;Shin, Aekyung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1249-1261
    • /
    • 2018
  • The quantitative representation for the magnetic force of a cylindrical permanent magnet acting on a ferromagnetic cylindrical object was derived on the basis of magnetization theories, and the Gilbert and Ampere models of magnetism. The magnetic force derived in this study is directly proportional to the remanent magnetization magnetic field, the cross-sectional area of the permanent magnet, the saturation magnetic field, and the cross-sectional area of the ferromagnetic object and is inversely proportional to the square of the quantity related to the distance between the permanent magnet and the ferromagnetic object. The magnetic forces of an AlNiCoV cylindrical permanent magnet and a Ferrite cylindrical permanent magnet, both with a radius of 0.4 cm and a length of 7 cm, acting on ferromagnetic objects at distances farther than the radius were calculated to be less than 3.6711 N and 0.1857 N, respectively.

Analysis on Dynamic Characteristics for Moving-Magnet Linear Oscillatory Actuator with Cylindrical Halbach Array (원통형 Halbach 배열 영구자석을 갖는 가동자석형 LOA의 동특성 해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.533-539
    • /
    • 2005
  • In the previous work, we performed the analysis of a tubular type moving-magnet linear oscillatory actuator (LOA) with cylindrical Halbach array by using 2-d analytical formulas and confirmed validity of analytical results by comparison of those with both finite element (FE) computation and experimental results. This paper deals with the dynamic characteristic analysis of the moving-magnet LOA with cylindrical Halbach array. Control parameters such as the thrust constant, the back-emf constant, resistance and inductance are obtained from both analytical and experimental results. And then, the dynamic simulation algorithm is established by the state and output equation obtained from voltage and motion equation. Finally, for various values of frequency, the dynamic simulation and experimental results for the characteristics of the voltage, current and displacement of moving-magnet LOA are presented. The simulation results are validated extensively by experiments. The experimental and simulation results for the variation of stroke according to control voltage are also presented for various values of frequency.

AC loss of HTS magnet for AMR refrigerator using magnetic field formulation and edge element in cylindrical coordinates

  • Kim, Seokho;Park, Minwon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • AMR (Active Magnetic Regenerative) refrigerators require the large variation of the magnetic field and a HTS magnet can be used. The amount of AC loss is very important considering the overall efficiency of the AMR refrigerator. However, it is very hard to estimate the precise loss of the HTS magnet because the magnetic field distribution around the conductor itself depends on the coil configuration and the neighboring HTS wires interact each other through the distorted magnetic field by the screening current Therefore, the AC loss of HTS magnet should be calculated using the whole configuration of the HTS magnet with superconducting characteristic. This paper describes the AC loss of the HTS magnet by an appropriate FEM approach, which uses the non-linear characteristic of HTS conductor. The analysis model is based on the 2-D FEM model, called as 'magnetic field formulation and edge-element model', for whole coil configuration in cylindrical coordinates. The effects of transport current and stacked conductors on the AC loss are investigated considering the field-dependent critical current. The PDE model of 'Comsol multiphysics' is used for the FEM analysis with properly implemented equations for axisymmetric model.

Vibration Suppression of Beam Using Magnet and Coil (자석과 코일을 이용한 빔의 진동 억제)

  • Cheng, Tai-Hong;Jung, Jung-Hwan;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.727-730
    • /
    • 2007
  • Coil inductor has been used widely as an electromagnet, because of the high magnetic filed resulting from the voltage applied to the coil. In this study the coils were used in vibration suppression as an actuator. The control system consists of a coil attached in aluminum beam and a permanent magnet set at its bottom. This actuation method is easy to be incorporated into the system and allows significant forces to be applied without contacting with the structure. Three types of coils (cylindrical type, square type, Circular sheet type) were employed in vibration suppression of cantilever beam. The positive position feedback (PPF) controller was applied to the magnet-coil actuator to suppress the first mode of vibration. Experimental results showed that the cylindrical type and square type coil made good vibration suppression efficiency under PPF controller than their eddy current damper. However, there was minimal difference for the circular sheet type coil if compared with its eddy current damper.

  • PDF

Analysis and Experimental Verification of the Moving-Magnet Linear Actuator with Cylindrical Halbach and Radial Array

  • Jang, Seok-Myeong;Park, Jang-Young;Lee, Sung-Ho;Cho, Han-Wook;Jang, Won-Bum
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.179-187
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration and to increase reliability. This paper analyzes and compares the characteristics of the tubular linear actuator with the cylindrical Halbach and radial array, respectively. A tubular linear actuator with cylindrical Halbach array, consisting of parallel magnetized arc segments instead of ideal radial and axial magnetized rings, is manufactured. The magnetic field solutions due to the PMs and to the currents are established analytically in terms of vector potential, using the 2-D cylindrical coordinate system. Motor thrust, flux linkage and back emf are then derived. Thrust characteristics according to such design parameters as magnet height and air gap length are also given. The results are validated extensively by comparison with finite element analysis (FEA). Test results such as thrust measurements are also given to confirm the analysis.

Calculation of Magnetic Field for Cylindrical Stator Coils in Permanent Magnet Spherical Motor

  • Li, Hongfeng;Ma, Zigang;Han, Bing;Li, Bin;Li, Guidan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2158-2167
    • /
    • 2018
  • This paper analyzed the magnetic field produced by the cylindrical stator coils of permanent magnet spherical motor (PMSM). The elliptic equations about the vector magnetic potential were given. Given that the eddy current effects are neglected, the magnet field of the PMSM is regarded as irrotational field, which can be calculated by scalar magnetic potential. The current density of cylindrical stator coil was proposed based on the definition of current density. The expression of current density of stator coil was obtained according to the double Fourier series decomposition and spherical harmonic functions. Then the magnetic flux density for scalar magnetic potential was derived. Further, the influence of different parameters on radial flux density was also analyzed. Finally, the results by the analytical method in this paper were validated by finite element analysis (FEA).

Novel Cylindrical Magnetic Levitation Stage for Rotation as well as Translation along Axles with High Precisions (고정밀 회전 및 축방향 이송을 위한 신개념 원통형 자기부상 스테이지)

  • Jeon, Jeong-Woo;Caraiani, Mitica;Lee, Chang-Lin;Jeong, Yeon-Ho;Kim, Jong-Moon;Oh, Hyeon-Seok;Kim, Sungshin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1828-1835
    • /
    • 2012
  • In this paper, a conceptual design and a detailed design of novel cylindrical magnetic levitation stage is introduced. This is came from planar-typed magnetic levitation stage. The proposed stage is composed of cylinder-typed permanent magnet array and semi-cylinder-typed 3 phase winding module. When a proper current is induced at winding module, a magnetic levitation force between the permanent magnet array and winding module is generated. The proposed stage can precisely move the cylinder to rotations and translations as well as levitations with the magnetic levitation force. This advantage is useful to make a nano patterning on the surface of cylindrical specimen by using electron beam lithography under vacuum. Two methods are used to calculate required magnetic levitation forces. The one is 2D FEM analysis, the other is mathematical modeling. This paper shown that results of two methods are similar. An assistant plate is introduced to reduce required currents of winding module for levitations in vacuum. The mathematical model of cylindrical magnetic levitation stage is used for dynamic simulation of magnetic levitations. A lead-lag compensator is used for control of the model. Simulation results shown that the detail designed model of the cylindrical magnetic levitation stage with the assistant plate can be controlled very well.

Design of Neodymium Permanent Magnetic Core using FEM (유한요소법을 이용한 네오디움 영구자석의 코어 설계)

  • Hur, Kwan-Do;Ye, Sang-Don
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

Fluroscopic Removal of the Foreign Bodies from Gastroesophagus Using the Magnet (자석을 이용한 식도 위 이물 제거술)

  • Park, Youn-Joon;Lee, Doo-Sun
    • Advances in pediatric surgery
    • /
    • v.13 no.2
    • /
    • pp.112-118
    • /
    • 2007
  • Ingested foreign bodies are common occurrences in the pediatric population. From October 2002 to April 2006, eight patients (6 male, mean age: $30.9{\pm}14.4$ months, range: 7~45 months) who had ingested metallic foreign bodies, such as bar magnets, coin-type magnets, screws, metal beads, and disk batteries, were selected for foreign body removal using a magnetic device under floroscopic control. A 1-cm-long cylindrical magnet (6 mm in diameter) was placed at the end of a 150-cm-long plastic tube from an IV set. The magnet was passed through the mouth into the stomach. Under fluoroscopic control, the magnet was maneuvered so that it attached to the metallic foreign bodies. The forgeign body was then easily removed by retracting the magnet with the metallic object attached. This procedure was successful in six patients of 8 patients. This procedure is a minimally-invasive and may avoid the use of anesthesics, endoscopy or surgery.

  • PDF