• Title/Summary/Keyword: Cylindrical lens

Search Result 72, Processing Time 0.027 seconds

A Study on the Reliability of Corrected Diopter according to Subjective refraction instrument (자각식굴절검사기기에 따른 교정굴절력의 신뢰도에 관한 연구)

  • Lee, Hark-Jun;Kim, Jung-Hee;Ryu, Kyung-Ho
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.281-286
    • /
    • 2010
  • Purpose: This research provided basic data for refraction by comparing the corrected diopter of trial lens and phoropter. Methods: We compared the corrected diopter of trial lens and phoropter, and analyzed statistical significance and relations of the spherical lens corrected diopter and cylindrical lens corrected diopter according to the types (trial lens and phoropter) of subjective refractive instruments. Also we analyzed statistical significance and relations between cylindrical lens corrected diopter at the astigmatism and the types (trial lens and phoropter) of subjective refractory instruments. Results: When we measured the corrected diopter of simple myopia, the mean value for corrected diopter was S-2.74D using the trial lens and S-2.65D using the phoropter. So the corrected diopter was 0.09D smaller when measured by phoropter. The degree of astigmatism was measured C-0.81D using the trial lens and C-0.77D using the phoropter which showed that the measured value was 0.04D smaller using the phoropter. On correlation analysis between the refractive instruments (trial lens and phoropter) and the corrected diopter, there was significant (p<0.01) strong correlation between refractory machine and corrected spherical diopter (r=0.996) and the correlation between refractory machine and corrected cylindrical diopter was r=0.986 and was also significant (p<0.01). Conclusions: The use of phoropter than trial lens was more desirable when performing refraction on high myopia (simple refractive error, high astigmatism), and when using trial lens, you should consider the vertex distance and the gap between overlapped lenses before prescription.

Comparative Analysis of Refractive Power on Trial Case Lenses (검안렌즈의 굴절력 비교 분석)

  • Moon, Byeong-Yeon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.321-334
    • /
    • 2012
  • Purpose: In this study, the distribution and differences in refractive powers on trial case lenses were investigated. Methods: We measured refractive powers at optical center and periphery using 4 trial case lens sets. According to international standards, the distribution and uniformity in refractive powers were investigated. Results: The lens shapes were different in different kinds of trial case lenses and some of lenses were out of tolerance according international standards. In some cases, the power differences were found between front and back side as well as between optical center and peripheral regions and also the cylindrical power on spherical lens and spherical power on the cylindrical lens were measured. Conclusions: Trial case lens are used to assess the refractive error, therefore, more precise control of the manufacturing process for trial case lenses and more thorough quality control will be required to offer an accurate vision test. More careful attention in using trial case lens is also required.

Distortion Correction of Boundary Lines in a Tunnel Image Captured by Fisheye Lens (어안렌즈 터널영상의 경계선 왜곡 보정)

  • Kim, Gi-Hong;Jeong, Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.55-63
    • /
    • 2011
  • Having a wide angle of view, a fisheye lens is useful for obtaining images of the inside wall of a tunnel. A circular fisheye tunnel image can be transformed into a familiar rectangular image by applying the concept of cylindrical projection. This projection transformation causes several types of distortions in the projected image. This paper discusses the distortion on the boundary lines between smoothly curved wall and flat ground. We analyzed the cause of this boundary distortion, developed transformation model, and derived a correction formular. A distortion correction software programmed in Visual C++ applied to projected image. Consequently, boundary-corrected image could be obtained. Research into other distortions of projected image will helpful in obtaining tunnel image that resembles real tunnel from fisheye tunnel image.

Study on Mounting Status of Trial Case Lenses (검안렌즈의 장착상태에 대한 연구)

  • Cho, Hyun-Gug;Moon, Byeong-Yeon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.405-411
    • /
    • 2013
  • Purpose: In this study, the mounting status of trial case lens was investigated. Methods: We measured distances between geometric center of lens mount and optical center of lens and angle deviations between axis mark on lens and real axis using arbitrary trial case lens sets distributed in Korea, and then, compared those results with international standards. Results: In some of lenses, the prismatic power on geometric center of lens mount and the angle deviations between axis mark and real axis of cylindrical lens were out of tolerance according international standards. Conclusions: The more precise control of the manufacturing process and more thorough quality control for trial case lenses will be required to offer an accurate vision test.

Design of a Bar-type TIR Lens Having a Freeform Surface for Forming a Line Beam Using an LED Light Source (LED 광원 사용 시 line beam 형성을 위한 자유 곡면 bar type의 TIR lens 설계)

  • Seo, Jin-Hee;Lee, Jeong-Su;Kim, Seo-Young;Jeong, You-Jin;Park, Hye-Jin;Nam, Deuk-Young;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.295-303
    • /
    • 2017
  • In this paper, we have studied a method of forming a line beam using a UV LED. The existing linear-type UV LED curing optical system is composed of several cylindrical lenses, but problems such as optical system alignment, enlargement of the module, efficiency, etc. may arise in the future. As an alternative to these problems, a bar-type TIR lens having a freeform surface only in the y-axis direction is designed, to verify that it shows advantages in maximum illuminance, uniformity of illuminance, and flux efficiency.

Improving the Sensitivity of an Ultraviolet Optical Sensor Based on a Fiber Bragg Grating by Coating With a Photoresponsive Material (광반응 재료가 코팅된 단주기 광섬유격자 기반 자외선센서의 광민감도 향상 연구)

  • Kim, Woo Young;Kim, Chan-Young;Kim, Hyun-Kyoung;Ahn, Tae-Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • This study was focused on developing an optical sensor that monitors ultraviolet (UV) light. Recently, we proposed and demonstrated a novel, highly sensitive UV sensor based on a fiber Bragg grating (FBG). To ensure that the incident UV light is focused on the FBG surface, the sensor was coated with an azobenzene polymer material that acts as a UV-induced stretchable functional material, in combination with a cylindrical focal lens. In this study we have improved the sensitivity of the sensor by employing a cylindrical focal mirror as a curved reflector, to refocus the UV light passing through the FBG. We considered the performance of several different types of reflectors and chose the optimal radius of curvature for the reflector. Compared to the UV sensor without an auxiliary device, the sensitivity of the FBG sensor with a focal lens and a curved reflector was 15 times as high.

Design and Analysis of Shell Runners to Improve Cooling Efficiency in Injection Molding of Subminiature Lens (초소형 렌즈 사출성형시 냉각효율 향상을 위한 박판형 러너의 설계 및 해석)

  • Yoon, Seung Tak;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1021-1028
    • /
    • 2015
  • Subminiature lenses are currently widely used in mobile phone cameras and are usually produced by injection molding. The lens molding process has the unique feature of a runner volume that is much larger than the part volume, and this feature should be considered when determining the mold design and molding conditions. In this study, a shell-type runner was proposed as an alternative to the conventional cylindrical runner used for lens molding. An injection molding simulation was performed by applying the proposed shell runner, and the simulation results were compared with those from the cylindrical runner case. It was found that the shell runner could considerably reduce the runner cooling time with only a slight increase in the injection pressure. The effect of the runner thickness was then investigated numerically in terms of the mold filling and cooling characteristics, from which an optimal runner thickness could be determined.

Optical Illumination System Design for LED Masthead Navigation Light (LED 광원을 이용한 마스트 항해등 조명광학계 개발)

  • Maeng, Pil-Jae;Jang, Jae-Hyeon;Kim, Kun-Yul;Yu, Young-Moon;Kim, Jong-Su;Kim, Jong-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.24-31
    • /
    • 2014
  • This paper dealt with the LED optical illumination system design for the Masthead navigation light to replace halogen lamps. We made Fresnel lens satisfy luminous intensity distribution of "Convention on the International Regulation for Preventing Collisions at Sea(COLREG)". The optical system is designed by classifying three parts: light source, lens, and cut off plate. The source of light has been made to have the uniform horizontal and vertical light distribution by placing 6 LEDs at intervals of $54^{\circ}$, and as the cylindrical Fresnel lens, the lens has been designed to achieve the uniform horizontal and vertical light distribution in the range of plain light. Finally, the cover has been designed to block the light from the outside of plain light and ultimately met the standards for light distribution of navigation lights. In addition, the validity of design has been verified with manufacturing a trial product.

Diameter Measurement of Cylindrical Objects by Non-Contact Method (비접촉식 방법에 의한 원통형 물체의 지름 측정)

  • Im, Bok-Ryoung;Kim, Sok-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Although there are many ways to measure the diameter of a cylindrical object, in this study, the diameter of a cylindrical objects were measured by the geometric optical method and interference-diffraction method which are two kinds of tipical non-contact methods. In geometric optical method, the curved laser beam is formed on the cylindrical surface by spreading the inclined laser beam using the cylindrical lens. The curve is captured by CCD camera and the diameter is calculated by geometry. And the interference and diffraction patterns of investigated cylindrical objects are analyzed in interference-diffraction method. In this study, the cylindrical objects, whose diameters are $0.05\;mm\;\~\;100.50\;mm$ were measured by the geometric optical method and interference-diffraction method. The results show that in each method, the relative errors of the measurement are within $2\%$ and $1\%$, respectively and these non-contact methods can be applied in the quick measurement of many objects.