• Title/Summary/Keyword: Cylindrical actuator

Search Result 55, Processing Time 0.026 seconds

Effects of the partially movable control fin with end plate of underwater vehicle

  • Jung, Chul-Min;Paik, Bu-Geun;Park, Warn-Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-65
    • /
    • 2017
  • Underwater torpedo has control fin with very low aspect ratio due to launching from limited size of cylindrical torpedo tube. If the aspect ratio of control fin of underwater vehicle is very low three-dimensional flow around control fin largely reduces control forces. In this study, the end plate was applied to reduce the three-dimensional flow effects of partially movable control fin of underwater vehicle. Through numerical simulations the flow field around control fin was examined with and without end plate for different flap angles. The pressure, vorticity, lift and torque on the control fin were analyzed and compared to experiments. The comparison have shown a reasonable agreement between numerical and experimental results and the effect of end plate on a low aspect ratio control fin. When the end plate was attached to the movable control fin, the lift increased and the actuator shaft torque did not significantly change. As this means less consumption of the actuator shaft torque compared to the control fin that has the same control force, the inner actuator capacity can be reduced and energy consumption can be saved. Considering this, it is expected to be effectively applied to the control fin design of underwater vehicles such as torpedoes.

Design Optimization of Moving-Coil Type Linear Actuator Using Level Set Method and Phase-Field Model (레벨셋법과 페이즈 필드 모델을 이용한 가동코일형 리니어 액추에이터 최적설계)

  • Lim, Sung-Hoon;Oh, Se-Ahn;Min, Seung-Jae;Hong, Jung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1223-1228
    • /
    • 2011
  • A moving-coil type linear actuator has been widely used in the system reciprocating short stroke because of its several advantages, such as the structural simplicity, low weight and a fast control response speed. This paper presents a design approach for improving the actuating performance with a clear expression of optimal configuration represented by a level set function. The optimization problem is formulated to minimize the variation of magnetic force at every moving displacement of the mover for fast and easy control. To consider the manufacturability of actuator, the concept of phase-field model is incorporated to control the complexity of structural boundaries. To verify the usefulness of the proposed method, the core design example of cylindrical linear actuator is performed.

Development of a Korean Type Totally Implantable TAH (한국형 완전이식 인공심장의 개발)

  • Min, B.G.;Choi, W.W.;Ahn, J.M.;Park, S.K.;Park, C.Y.;Chang, J.K.;Kim, J.W.;Kim, H.C.;Kim, W.K.;Roh, R.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.199-202
    • /
    • 1996
  • Artificial hearts are intended for use in patients with severe forms of heart disease for which no surgical repair is possible. The moving-actuator pump was developed to decrease the overall volume size of the electromechanical total artificial heart (TAH) by eliminating the occupied space of the fixed-actuator in the conventional pusher-plate type pump. In our pump, the actuator moves back and forth for alternative ejections of left and right ventricles. The problem of fitting the TAH to atrial remnants and arterial vessels could also be improved by circular or penduluous mot ion of the actuator instead of linear mot ion of the pusher-plate in the conventional pumps. We have evaluated two types of moving- actuator pump; one is a rolling cylinder type, and the other a pendulum type pump. In the rolling cylinder pump, frictional energy loss exists between the pump housing's guide bars and the actuator's end caps, while the bottom rack under the cylindrical actuator increases the height of the pump, the pump is therefor not implantable inside the small chest of human-sized animals with a body weight of less than 70kg. The new human type pump has a penduluous mot ion actuator to correct the above problems while maintaining the advantage of the moving- actuator's small total volume. The totally implantable TAH is composed of a blood pump, a control system and pheriperal equipments. The blood pump, which is constructed by a moving actuator, a right and left blood sac, and four artificial valves, is implanted in the thoracic. In 1988, the first implantation of the rolling cylinder TAH was performed into a female calf weighing 100kg, and the cal f recovered to the degree of voluntary standing and eat ing and survived to 100 hrs. We then survived two female sheep weighing about 63kg with the new human type TAH for three days.

  • PDF

Design of Ultrasonic Vibration Device using PZT Actuator for Precision Laser Machining (압전구동기를 이용한 정밀 가공용 초음파 진동장치 설계)

  • Kim, W.J.;Fei, L.;Cho, S.H.;Park, J.K.;Lee, M.G.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2011
  • As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in micro hole array on the surface of the stent, the problem can be solved. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver it to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20kHz and amplitude over 500nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT also is selected to have high actuating force and high speed of motion. The support has symmetrical and rigid characteristics.

  • PDF

A Performance Analysis of Active Mount with Moving-Coil type Electromagnetic Actuator Installed on the Elastic Foundation (탄성지지된 가동코일형 능동마운트의 성능 분석)

  • Jung, Woo-Jin;Bae, Soo-Ryong;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.227-231
    • /
    • 2014
  • Underwater radiated noise is one of the vital factors in underwater weapon systems like submarine. A passive elastic mount is an effective reduction method for the vibration from a ship-board machinery transmitted to the hull which is radiated as noise outside the hull. A passive elastic mount shows the limitation on the vibration reduction and needs multi stage mounting system including double stage one to meet the required underwater radiated noise criteria. It is necessary for the multi stage mounting system to consider the large displacement in the underwater shock explosion. So it is difficult to apply the multi stage mounting system in submarine because of space limitation. Also recent navy sonar system are trying to have the capability to detect the ship-borne acoustic signals in the low frequency range. An alternative to the passive mount is an active mount with moving-coil type electromagnetic actuator based on a conventional rubber mount in the low frequency range. In the previous paper, 4 active mounts with moving-coil type electromagnetic actuator based on the rubber mount were installed on the hard floor of the facility, which means no consideration on the elastic foundation effect for the control of the active mounts was taken into account. In this study, an experimental performance analysis on the active mount was carried out using 4 active mounts installed on the cylindrical structure to investigate the elastic foundation effect.

  • PDF

Development of An Actuator-Based Blood Pressure Simulator for Automatic Blood Pressure Monitor (자동혈압계 점검을 위한 액추에이터 기반의 혈압 시뮬레이터 개발)

  • Soo Hong Kim;Seung Jun Lee;Mun Hyeok Lim;Hye Min Park;Min Seok Gang;Gun Ho Kim;Kyoung Won Nam
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.49-55
    • /
    • 2024
  • Accurate measurement of blood pressure is essential for classifying an individual's disease, identifying blood pressure-related risks, and managing health. Due to the environmental and health hazards of mercury sphygmomanometers, automatic sphygmomanometers using the oscillometric method are widely used in hospitals as well as in general homes, and have established themselves as a practical standard sphygmomanometer. In this study, we developed a blood pressure simulator using an actuator that provides simulated pressure to an automatic blood pressure cuff. The developed blood pressure simulator adopts an arm-shaped cylindrical shape similar to the situation in which a person measures blood pressure with an automatic blood pressure monitor, and implements a method of transmitting pressure to the cuff using a pressure plate. Accuracy was evaluated through the mean and standard deviation of the difference with the commercialized blood pressure simulator BP PUMP 2, and reproducibility was confirmed using two automatic blood pressure monitors. The developed blood pressure simulator enables automatic blood pressure monitoring in a simple manner and also meets the evaluation standards for accuracy and reproducibility. In the future, as a standardized blood pressure simulator, it is expected to be of great help in evaluating and verifying the performance of automatic blood pressure monitors by supplementing precise hardware and software and building a blood pressure database.

Servo control system of electrostatic micro-actuator for micro robots

  • Sim, Kwee-Bo;Hashimoto, Hideki;Fujita, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.964-968
    • /
    • 1988
  • In mechanical systems in which the dynamics of armatures is dominated by electrostatic forces, motions will generally be unstable. This paper deals with the control problems of this kind of micro electrostatic device systems. In these systems, the mass of micro mechanical parts is so small that the inertia term in the equation of motion is negligible. However, nonlinear terms, such as friction and driving force, become dominant. The purpose of this paper is to realize the stable motion without delay and, overshoot etc. A micro-mechanical system used in this paper consists of a plane wafer with striped electrodes converted with an insulation layer and thin cylindrical roller is placed over on it. The performance of motions is confirmed by some simulations.

  • PDF

A Maneuver Interface Scheme of a Hydraulic Backhoe Manipulator (유압구동 백호 작업기 조작 인터페이스개발)

  • Yoon, Jung-Won;Auralius, Manurung;Yoon, Jong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.346-352
    • /
    • 2010
  • This paper presents an intuitive interface scheme for controlling a hydraulic backhoe, which is a piece of excavating equipment consisting of a digging bucket on the end of a two-part articulated arm, and typically mounted and rotated on the back of a tractor or front loader. The passive levers/joysticks for actuator operations of a hydraulic backhoe are replaced into electric joysticks with a robotic controller, which will generate the end-effecter command trajectories of the backhoe through joystick rate control in cylindrical coordinate. The developed backhoe with the hydraulic control system showed the maxim position error of 3 cm with intuitive coordinate operations, which would be helpful for conveniently performing various excavating tasks with natural and effective ways.

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.

A Study on Directivity of Optical Fiber Sensor Using the Sagnac Interferometer in Underwater (수중에서 Sagnac 간섭계를 이용한 광섬유 센서의 지향성에 관한 연구)

  • Shin, Dae-Yong;Kwon, Ki-Tae;Lee, Jong-Kil;Lee, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1714-1716
    • /
    • 2002
  • Optical fiber sensor is a subject which has been attracted considerable attention in recent year. Especially, it is being developed for the detection and location of partial discharge in oil-filled transformers. In this paper, we propose and experimentally demonstrate directivity and sensitivity of a hollow cylindrical mandrel sensor. The sound source is a PZT actuator of hollow cylinder type. Several layers of the fiber laminated around the mandrel surface and experiments were performed on three axis modes. The experimental results can be applied to analyze detected signals optimally.

  • PDF