• 제목/요약/키워드: Cylindrical Gear

검색결과 42건 처리시간 0.024초

컴퓨터를 이용한 동력전달용 인벌류우트 원통치차의 설계 (Computer-Aided Design of Involute Cylindrical Gears for Power Transmission)

  • 정태형;김민수
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.594-602
    • /
    • 1990
  • 본 연구에서는 동력전달용 인벌류우트 원통치차(스퍼어 및 헬리컬 기어)의 강 도 및 각종 영향인자를 충분히 고려하면서 크기를 최소로 하는 치차장치의 설계법을 개발하고, 이 설계법을 기본으로 하여 퍼스널 컴퓨터 상에서 누구나 손쉽게 설계에 이 용할 수 있는 설계 시스템을 개발하여 그 평가를 수행한다.

원통형 웜기어의 접촉선 해석 (Tooth Durability Evaluation of n Cylindrical Worm Gear by Contact Line Analysis)

  • 천길정;한동철
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1231-1237
    • /
    • 1999
  • Applying the conjugate contact condition, contact lines of a cylindrical worm gear has been calculated. The characteristics of tooth contact were analyzed and the pitting resistance were also assessed. It has been verified that: i) the length of contact is shortest on the 1st tooth of the front region, ii) the contact region is more narrow in the recess side than in the access side, iii) the contact region is more narrow in worm than in worm wheel. Hence, the pitting resistance is weakest in the recess side of the 1st contacting worm tooth.

헬리컬 기어의 냉간단조에 관한 상계해석 (II) (Upper-bound Analysis for Cold Forging of Helical Gear ( II ))

  • 최재찬;탁성준;최영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.144-149
    • /
    • 1996
  • In this paper, the clamping type forging of helical gears has been investigated. Clamping type forging is an operation in which the product is constrained to extrude sideways through an orifice in the container wall. Punch is cylindrical shaped. The punch compresses a cylindrical billet placed in a die insert. As a consequence the material flows in a direction perpendicular to that of punch movement. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle, friction factor and initial height of billet on the forging of helical gears.

  • PDF

롤러기어캠 기구를 위한 회전운동형 롤러 종동절을 가진 원통 캠의 형상 설계에 관한 연구 (A Study on Shape Design of Cylindrical Cam with Rotating Roller Follower in Roller-Gear-Cam Mechanism)

  • 신중호;강동우;윤호업
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1527-1533
    • /
    • 2002
  • When a mechanism transfers a motion to an intersected shaft, a cylindrical cam mechanism may be the best choice among the mechanisms. The cylindrical cam with a roller follower provides to transfer the motions to the intersect shafts simply without other connecting equipments of the intersect shafts. Typical example may be a roller-gear-cam mechanism. But the shape of the cam must be exactly defined in order to satisfy the conditions for the prescribed motion of the follower. This paper proposes a new method for the shape design of the cylindrical cams and also a CAD program is developed by using the proposed method. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints. The constraint used in the relative velocity method is that the relative velocity must be parallel to a common tangent line at the contact point of two independent bodies, i. e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. Finally, this paper presents an example in order to prove the accuracy of the proposed methods in this paper and the application of the CAD program"CamDesign".

다단 치차장치의 설계법 (Design Method for Multi-Stage Gear Drive)

  • 정태형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.470-475
    • /
    • 1999
  • Recently as the application of gear drive increases in high-speed and high-loading, the concern of designing multi-stage gear drive is being risen. Until now however, the research of gear drive is focused on single-stage gear drive and the design depends on experiences and know-how of designer and is carried out by trial and error. This research automated the basic design and the configuration design for two and three-stage gear drives which consist of cylindrical gears. In basic design, design is executed with two design processes, which minimize the overall volume of gear, and whose results are compared each other. In configuration design, the positions of gears are determined to minimize the volume of gearbox using the result of basic design and simulated annealing algorithm.

  • PDF

Development of a Design System for Multi-Stage Gear Driver (1st Report : Proposal Formal Processes for Dimensional Design)

  • Chong, Tae-Hyoun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.57-64
    • /
    • 2001
  • In recent years, the concern of designing multi-stage gear drives ha increased with more application of them in high-speed and high-load. Until now, however, the researches on the design of gear drives have been focused on single gear pairs. Thus the design practice for multi-stage gear drives has been depended on experiences and expertise of designers and carried out commonly by trial and error. We propose an automation algorithm for the design of two-and three-strage cylindrical gear drives. The two types of dimensional design processes have been proposed to determine gear dimensions in a formal way. The first design process(Process I) uses to total volume of gears to determine gear ration , and uses K factor , unit load and aspect ration to determine gear dimensions, The second one(Process II) makes use of Niemann's formula and center distance to calculate gear ratio and gear dimensions. Process I and Process II employ material date from AGMA and ISO standards, respectively. The configuration design determines the positions of gears with minimizing the volume of gearbox by using a simulated annealing algorithm. The availability of the design algorithm is validated by the design examples to two-and three=stage gear drives.

  • PDF

다단 치차장치 설계 시스템 개발에 관한 연구(제 1보: 정식화된 제원 설계 프로세스의 제안) (Development of a Design System for Multi-Stage Gear Drives (1st Report : Procposal of Formal Processes for Dimensional Design of Gears))

  • 정태형
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.202-209
    • /
    • 2000
  • In recent years the concern of designing multi-stage gear drives increases with the more application of gear drives in high-speed and high-load. until now however research on the gear drive design has been focused on single gear pairs and the design has been depended on experiences and know-how of designers and carried out commonly by trial and error. We propose the automation of the dimensional design of gears and the configuration design for gear arrangement of two-and three-stage cylindrical gear drives. The dimensional design is divided into two types of design processes to determine the dimensions of gears. The first design process(Process I) uses the total volume of gears to determine gear ratio and uses K factor unit load and aspect ratio to determine gear dimensions. The second one(Process II) makes use of Niemann's formula and center distance to calculate gear ratio and dimensions. Process I and II employ material data from AGMA and ISO standards respectively. The configuration design determines the positions of gears to minimize the volume of gearbox by simulated annealing algorithm. Finally the availability of the design algorithm is validated by the design examples of two-and three-stage gear drives.

  • PDF

분말 압출 공정에서 온도 유지시간 제어를 통한 미세기어의 내피로성 향상 연구 (Improvement of fatigue resistance of the miniature gear by controlling holding time of temperature in the hot powder extrusion process)

  • 김진우;이경훈;황대원;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.449-452
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 1.8 by hot extrusion process of mechanically alloyed Zn-22wt%Al powder at various temperature. The mechanical alloying was preformed for ball milled times of 8h, 16h and 32h by the planetary ball milling. Mechanically alloyed powders were compacted cylindrical performs. Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. The extruded spur gear was sintered for 2h at $350^{\circ}C$ in argon atmosphere. The friction between the die and the powdered billet and the internally different density due to complex product shape cause the internal crack. To overcome the mentioned problems, high dimensional accuracy at cross section of the spur gear and uniform Vickers hardness could be obtained by graphite lubricant and controlling holding time.

  • PDF

핀 휠을 구비한 외륜형 선회베어링의 면압강도 (Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set)

  • 권순만
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.231-237
    • /
    • 2015
  • The pin-gear drive is a special form of fixed-axle gear mechanism. A large wheel with cylindrical pin teeth is called a pinwheel. As pinwheels are rounded, they have a simple structure, easy processing, low cost, and easy overhaul compared with general gears. They are also suitable for low-speed, heavy-duty mechanical transmission and for occasions with more dust, poor lubrication, etc. This paper introduces a novel slewing ring bearing with an external pinwheel gear set (e-PGS). First, we consider the exact cam pinion profile of the e-PGS with the introduction of a profile shift. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of the e-PGS can be lowered significantly by increasing the profile shift coefficient.

헬리컬기어의 구속형 단조에 관한 연구 (A study on the clamping type forging of helical gear)

  • 최재찬;최영;탁성준;조해용
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1827-1836
    • /
    • 1997
  • In this paper, the clamping type forging of helical gears has been investigated. Clamping type forging is an operation in which the product is constrained to extrude sideways through an orifice in the container wall. Punch is cylindrical shaped. The punch compresses a cylindrical bilet placed in a die insetr. As a consequence the material flows in a direction perpendicular to that of punch movement. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduce to re4present tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle, friction factor and initial height of billet on the forging of helical gears. Some firgiing experiments were catrried out with aluminium alloy to show the validity of the analysis. Good agreement was found between the predicted values of the forging load and obtained from the experimental results.