• Title/Summary/Keyword: Cylindrical Electrode

Search Result 128, Processing Time 0.024 seconds

Effect of a Cylindrical Third Electrode of a Point-Plate Type Plasma Reactor on Corona Discharge and Ozone Generation Characteristics (침대 평판형 플라즈마장치의 코로나 방전 및 오존발생 특성에 미치는 원통형 3전극의 영향)

  • Moon, Jae-Duk;Jung, Ho-Jun;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.933-937
    • /
    • 2007
  • A point plate type nonthermal plasma reactor, with a grounded cylindrical third electrode which closely- encompasses the needle point, have been investigated with an emphasis on the role of the third electrode. It was found that the point plate airgap, with the grounded third electrode, had a switching characteristic on its I V characteristics for negative and positive discharges, which is very different from that of a conventional point plate airgap without a third electrode. The corona discharge and ozone generation characteristics of the plasma reactor with the grounded cylindrical third electrode, such as the corona onset voltage. the breakdown voltage. the corona current. and the amount of output ozone, were influenced significantly by the height of the third electrode. and these characteristics can be controlled by adjusting the height of the third electrode.

An Maximization of Ionic Wind Utilizing a Cylindrical Corona Electrode (관형 코로나 방전전극을 이용한 이온풍속의 최대화)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2256-2261
    • /
    • 2010
  • A corona discharge system with needle point or wire type corona electrode has been well used as an ionic wind blower. The corona discharge system with a needle point electrode produces ions at lower applied voltage effectively. However, the corona discharge on the needle point electrode transits to the arc discharge at lower voltage, and it is hard to obtain the elevated electric field in the discharge airgap for enhancing the ion migration velocity due to the weak Coulomb force. A cylindrical corona electrode with sharp round tip is reported as one of effective corona electrode, because of its higher breakdown voltage than that of the needle electrode. A basic study, for the effectiveness of cylindrical electrode shape on the ionic wind generation, has been investigated to obtain an maximum wind velocity, which however is the final goal for the real field application of this kind ionic wind blower. In this paper, a parametric study for maximizing the ionic wind velocity utilizing the cylindrical corona electrode and a maximum ion wind velocity of 4.1 m/s were obtained, which is about 1.8 times higher than that of 2.3m/s obtained with the needle corona electrode from the velocity profile.

Effective Ionic Wind Generation Utilizing a Cylindrical Corona Discharge Electrode (금속관형 코로나 방전극을 적용한 효과적인 이온풍 발생)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.599-603
    • /
    • 2010
  • A point-mesh type corona system has been well used as a ionic wind blower. However this type corona system suffers from its lower ionic wind generation, because of its lower on-set and breakdown voltages of its very sharp needle point corona electrode. This means that the point corona electrode must act both as an effective ion-generator and a very higher electric field producer in the discharge airgap in order to generate higher ionic wind velocity. In this paper, a cylinder-mesh type discharge system as a ionic wind generator is proposed and investigated. The cylindrical corona electrode can produce many ions from its sharpened edge, and the corona on-set and breakdown voltages are very higher than those of the needle point corona electrode. As a result, this type cylindrical corona electrode might generate a higher ionic wind than the needle point corona electrode.

Half spherical electrode machining in micro EDM (미세 방전 가공을 이용한 반구형 전극 제작)

  • 김기현;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1080-1084
    • /
    • 2001
  • In manufacturing a micro die with half spherical cavity by MEDM, it is necessary to prepare an electrode with the same shape. This paper suggests a simple method to manufacture a half spherical electrode based on tool wear. The tool wears more rapidly at the edge of a cylindrical electrode. In order to make a half spherical micro electrode, cylindrical electrode was fed into the workpiece by the distance of its radius. The d/R(depth/Radius) value varied with respect to capacitance and electrode diameter. The smaller the size of electrode was, the closer the electrode tip geometry approached to a half sphere.

  • PDF

Analyse the Electric field of symmetrical and asymmetrical concentric electrodes

  • Singhasathein, Arnon;Suwanapingkarl, Pasist;Phanthuna, Nattaphong;Ted-I, Taweesak;Teevarangsan, Teepagon;Yumonthian, Tananan
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.114-119
    • /
    • 2015
  • The different between two potential voltages can cause the electric field. The electric field is normally distributed along the radius of electrode, and hence it depends on the shape of electrodes. This paper analyses the distribution factor of electric field of symmetrical and asymmetrical concentric electrodes by using Finite Element technique. This allows an analysis the optimum safety clearance distance between two concentric electrodes. The symmetrical concentric electrode refers to Spherical-Spherical concentric electrodes and Cylindrical-Cylindrical concentric electrodes. It must be noted that the symmetrical electrodes are mostly applied for Gas Insulated Substation (GIS) equipments. The asymmetrical electrodes mention to Spherical (inner)-Cylindrical (outer) concentric electrodes and Cylindrical-Cube concentric electrodes, which present as the connection point of High Voltage (HV) cable. The simulations is also complies with the existing standards and regulations in order to ensure the accurate results.

Theoretical resistance in cylindrical electrodes with conical tip

  • Hong, Chang-Ho;Kim, Jin-Seop;Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.337-343
    • /
    • 2022
  • The electrical resistivity method is a well-known geophysical method for observing underground conditions, (such as anomalies) and the properties of soil and rock (such as porosity, saturation, and pore fluid characteristics). The shape of electrodes used in an electrical resistivity survey depends on the purpose of the survey and installation conditions. Most electrodes for field applications are cylindrical for sufficient contact with the ground, while some are conically sharpened at their tips for convenient penetration. Previous study only derived theoretical equations for rod-shaped electrodes with spherical tips. In this study, the theoretical resistance for two cylindrical electrodes with conical tips is derived and verified experimentally. The influence of the penetration depth and tip on the measurement is also discussed.

Temperature Dependence Characteristics of Double Cylindrical Type Ozonizer Using Spiral Type Internal Electrode (나선형 내부전극을 사용한 2중 원통형 오존발생기의 온도의존특성)

  • Chun, Byung-Joon;Lee, Sang-Keun;Rahman, Md. Fayzur;Lee, Dong-Heon;Park, Won-Zoo;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2004-2006
    • /
    • 1999
  • In this paper, double Cylindrical type ozonizer has been designed and manufactured to improve ozone yield by cooling external electrode. The ozonizer equipped with three electrodes ( central, internal and external electrodes ). Discharge and ozone characteristics are described in this paper by varying the flow rate( Q ) of oxygen supplied gas, temperature of cooling gas and supplied voltage.

  • PDF

The Deterioration Phenomena for Dielectrics Causing Corona Discharge (Corona방전에 의한 유전체의 열화현상)

  • 성영권;백영학;차균현
    • 전기의세계
    • /
    • v.19 no.6
    • /
    • pp.18-25
    • /
    • 1970
  • The object of this project is to manifest the mechanism of deterioration phenomena for dielectrics causing corona discharge and applies it for determine the standard corona detection technique. As the results, we observed that corona discharges may occur more strongly around cylindrical shape electrode in air than hemisphere shape electrode in vacuum, so that it depends on effects such as shape of the electrode, moisture, surface coditions, etc. According to observed the deterioration of dielectrics takes place in following stages. At first the attacked surface by an electron avalanche is uniformly eroded; then pits are formed; after that sharp channels are formed which lead to break-down as a treeing. The test are accelerated with higher frequencies by the cylindrical bar shape electrode in the pulse stright detection method more sensitive than Lissajous patterns. Lissajous patterns detection method is simple but usually insensitive and has disadvantage that the magnitude of the individual discharge is not measured.

  • PDF

Effect of geometry of underground structure and electrode on electrical resistance measurement: A numerical study

  • Tae-Young Kim;Hee-Hwan Ryu;Meiyan Kang;Suyoung Choi;Song-Hun Chong
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • Recently, electrical resistivity surveys have been used to obtain information related to underground structures including burial structure type and depth. However, various field conditions hinder understanding measured electrical resistance, and thus there is a need to understand how various geometries affect electrical resistance. This study explores the effect of geometric parameters of a structure and electrodes on electrical resistance in the framework of the finite element method. First, an electrical resistance module is developed using the generalized mesh modeling technique, and the accuracy of the module is verified by comparing the results with the analytical solution for a cylindrical electrode with conical tip. Then, 387 cases of numerical analysis including geometric parameters of a buried structure and electrodes are conducted to quantitatively estimate the detection depth under a steady-state current condition. The results show that electrical resistance is increased as (1) shallower burial depth of structure, (2) closer distance between ground electrode and structure, (3) longer horizontal electrode distance. In addition, the maximum detection depth corresponding to converged electrical resistance is deeper as (4) closer distance between ground electrode and structure, (5) shorter horizontal electrode distance. The distribution of the electric potential around the electrodes and underground structure is analyzed to provide a better understanding of the measured electrical resistance. As engineering purpose, the empirical equation is proposed to calculate maximum detection depth as first approximation.

Effects of 27.12 MHz Radio Frequency on the Rapid and Uniform Tempering of Cylindrical Frozen Pork Loin (Longissimus thoracis et lumborum)

  • Choi, Eun Ji;Park, Hae Woong;Yang, Hui Seon;Kim, Jin Se;Chun, Ho Hyun
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.518-528
    • /
    • 2017
  • Quality characteristics of frozen cylindrical pork loin were evaluated following different tempering methods: 27.12 MHz curved-electrode radio frequency (RF) at 1000 and 1500 W, and forced-air convection (FC) or water immersion (WI) at $4^{\circ}C$ and $20^{\circ}C$. The developed RF tempering system with the newly designed curved-electrode achieved relatively uniform tempering compared to a parallel-plate RF system. FC tempering at $4^{\circ}C$ was the most time-consuming process, whereas 1500 W RF was the shortest. Pork sample drip loss, water holding capacity, color, and microbiological quality declined after WI tempering at $20^{\circ}C$. Conversely, RF tempering yielded minimal sample changes in drip loss, microstructure, color, and total aerobic bacteria counts, along with relatively uniform internal sample temperature distributions compared to those of the other tempering treatments. These results indicate that curved-electrode RF tempering could be used to provide rapid defrosting with minimal quality deterioration of cylindrical frozen meat block products.