• Title/Summary/Keyword: Cylindrical Body

Search Result 199, Processing Time 0.023 seconds

A new CNC system for free-form body machining with a cylindrical tool

  • Urata, Eizo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.9-23
    • /
    • 1993
  • Free-form surface machining is usually performed with an NC milling machine and a ball end milling cutter. Since this conventional method is basically sculpting on a plane, it is not suitable for three dimensional body machining. This article will introduce a new machining method for three dimensional body with free-form surface and newly developed machine tool suitable for such machining.

  • PDF

A Study on Drag Reduction of Cylindrical Underwater Body Using Sintered Mesh (소결 메쉬를 이용한 원통형 수중운동체 항력 감소 연구)

  • Jung, Chulmin;Paik, Bugeun;Kim, Kyungyoul;Jung, Youngrae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.195-203
    • /
    • 2018
  • Among the techniques of reducing the drag to increase the speed of underwater moving bodies, we studied on the drag reduction method by gas injection. Researches on gas injection method have been paid much attention to reduce the drag of vessels or pipe inner walls. In this study, we used a sintered metal mesh that can uniformly distribute fine bubbles by gas injection method, and applied it to a cylindrical underwater moving body. Using the KRISO medium-sized cavitation tunnel, we measured both the bubble size on the surface of the sintered mesh and the bubble distribution in the boundary layer. Then, drag reduction tests were performed on the cylinder type underwater moving models with cylindrical or round type tail shape. Experiments were carried out based on the presence or absence of tail jet injection. In the experiments, we changed the gas injection amount using the sintered mesh gas injector, and changed flow rate accordingly. As a result of the test, we observed increased bubbles around the body and confirmed the drag reduction as air injection flow rate increased.

A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes (냉각홀 형상 변화에 바른 원형봉 선단의 막냉각 특성 연구)

  • Kim, S.-M.;Kim, Youn J.;Cho, H.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.298-303
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1{\times}10^4$. The effect of coolant flow rates was studied for blowing ratios of 0.7, 0.9, 1.2 and 1.5, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.

  • PDF

Visualization Study on Kinematics of Bubble Motion in a Water Filled Cylindrical Tank (원형 탱크 내부의 기포운동에 대한 가시화 연구)

  • Kim, Sang-Moon;Jeong, Won-Taek;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • A visualization study to evaluate bubble motion in a tab water filled cylindrical tank with a varying flow rate of compressed air is conducted. The flow rate of compressed air varies from 1 to 5 L/min. Time resolved images are acquired by a high speed camera in 10 bit gray level at 100 fps and the measurement volume is irradiated by a 230 W halogen lamp. It is observed that there are three different regions; the bubble formation region, the rising bubble region and the free surface region. During the rise of bubble, the shape is changed as if an elastic body. Based on the binarized bubble image, the mean diameters of rising bubbles are estimated at beneath of the free surface. As the gas flow rate increases, the mean diameter is increased and the rising velocity also increases with buoyancy force.

RADIATION HEAT TRANSFER IN HORIZONTAL CYLINDRICAL ANNULUS (수평원관 사이 환상유로에서의 복사열전달 연구)

  • Han, C.Y.;Park, E.S.;Jeon, H.Y.;Yu, M.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.75-77
    • /
    • 2011
  • Thermofluid flow analysis is major subject in most computational fluid dynamics applications. Accompanying convective and conductive heat transport phenomena, radiation plays an important role in high temperature operating systems. Cares in which the radiation dominates are found in such systems as boilers, furnaces, rocket engines, etc. In this paper the finite-volume method (FVM) are employed to simulate two-dimensional radiation problems in concentric and eccentric horizontal cylindrical annuli with general body-fitted coordinates. In that case the simplest and intuitive remedies are proposed for mitigation of ray effect.

  • PDF

Experimental Study of Film Cooling Behaviors at a Cylindrical Leading Edge

  • Kim S. M.;Kim Youn-J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1\;\times\;10^4$. The free-stream turbulence intensity kept at $5.0\%$ by using turbulence grid. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance may be significantly improved by controlling the blowing ratio. As blowing ratio increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure variation around the cylinder surface.

  • PDF

A STUDY ON THE CHUMSUNGDAE'S FIGURES AND FUNCTIONS (첨성대 수치와 역할에 대한 연구)

  • Kim, Kwang-Tae
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.25-36
    • /
    • 2013
  • Chumsungdae is an ancient astronomical observatory whose main role was doing 'chunmoon'. It was administrate by a royal advisory agency on state affairs. The observers observed the heaven on the observatory platform, recorded peculiar events, and watched and interpreted the signs displayed in the heaven. Chumsungdae is an stonemasonry which represents almanac principles with its peculiar shapes and the numbers of strata and stones. The numbers were thoroughly invented to match exactly the almanac constants. Chumsungdae is comprised largely of three main parts, namely the square base, the stratified cylindrical body, and the top #-shaped stonework, and the total number of stones is 404. The number of the strata (27) and the height of the cylindrical body (27 尺) stand for the days in a sidereal month (27.3 days), which implies that the motion of the Moon with respect to the stars was given more priority than to the Sun at that time of geocentricism. And the cylindrical body was thoroughly designed to consist of 365 stones, which is of course the number of days in a solar year. In addition, there are 12 strata each under and above the south entrance and this in sum makes the 24 divisions of the year. Also there is 182 stones below the 13th stratum and this represents the number of days in the winter ~ summer solstice period, and the rest 183 stones the vice versa. The #-shaped top stonework was aligned in such a way that one of the diagonals points the direction of sunrise on the winter solstice. The square base also layed with the same manner. The south entrance was built 16 degrees SE, and the upright direction of the right pillar stone coincides with the meridian circle. This was a kind of built-in standard meridian circle facilitating the observations. In a symbolic sense, Chumsungdae was thought as the tunnel reaching the heaven, where the observers wished to be enlightened with the signs and inspirations in need. With the craftsmanship and skill, the builder reinforced the stratified cylindrical body with two sets of #-shaped beam stones, piercing at a right angle at 19th ~ 20th and 25th ~ 26th strata. Likewise, by placing the double #-shaped stonework with 8 beam stones on the platform of the observatory, both the stability of the stonemasonry and a guard rail for the nightly observers were securely provided.

The Relationship of the Body Surface Development Figure with the Sleeve Basic Pattern in the Standing and Arm-Movement Positions (정립시 및 동작시 팔의 체표면 전개도와 소매원형의 관계)

  • Cho, Kyunghee
    • Journal of Fashion Business
    • /
    • v.17 no.1
    • /
    • pp.170-185
    • /
    • 2013
  • The suitability of the pattern manufactured with the development figure was considered by reviewing the development conditions that can be directly connected to the basic pattern in the human body surface development figure with the cast bandage method. The method to prepare the sleeve basic pattern was based on the cylindrical surface development method, and the sleeve basic pattern covering the 45 and 90 degrees momentum of the arm-movement was made by using the cast-type body surface development figure prepared with the horizontal line of the sleeve hem placed horizontally in the plan and by combining the cast-type body surface development figure in the standing position with the figure in the moving position. The test clothing was prepared with the sleeve pattern adding the bodice pattern in the standing position and the momentum and was worn on the FRP replica. The relationship theory of the body surface development figure with the pattern was derived by reviewing the suitability from the wearing state. The sleeve-cap height of the sleeve basic pattern resulted in about 80% in the standing position when the needs for a physical activity are 45 degrees and the about 50% when the needs for a physical activity are 90 degrees. The additional size of the diagonal length of the sleeve-cap could be set as "0" if the sleeve-cap height is low by 50% and as 50% of the additional size in the standing position if the sleeve-cap height is 80%.

Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

  • Ahmadi, Isa;Najafi, Mahsa
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1193-1214
    • /
    • 2016
  • In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.

Viscoelastic Stress Analysis of Adhesive-bonded Cylindrical by FEM (유한요소법을 이용한 원통체의 점탄성 응력 해석)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.259-267
    • /
    • 2019
  • Purpose: In this paper adhesive-bonded cylindrical lap joints are analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. Method: The distribution of the stresses in the adhensive is evaluated using the Finite Element Method. Nuverical examples for identical and different adherends bonded through a four parameter viscoelastic solid adhesive are illustrated. Results: The stress distribution in the adhesive layer with respect to time is shown. The stress distribution in the adhesive layer with respect to time is shown. The results are also shown that adherend thickness and elastic modulus give effect on the normalized stress. Conclusion: In this study, the stress distribution of the adhesive layer of the wrapped cylindrical body considering the viscoelasticity of the adhesive layer was numerically analyzed by using a four - element elastomer model.