• Title/Summary/Keyword: Cylinder Tool

Search Result 155, Processing Time 0.028 seconds

3D feature profile simulation for nanoscale semiconductor plasma processing

  • Im, Yeon Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.1-61.1
    • /
    • 2015
  • Nanoscale semiconductor plasma processing has become one of the most challenging issues due to the limits of physicochemical fabrication routes with its inherent complexity. The mission of future and emerging plasma processing for development of next generation semiconductor processing is to achieve the ideal nanostructures without abnormal profiles and damages, such as 3D NAND cell array with ultra-high aspect ratio, cylinder capacitors, shallow trench isolation, and 3D logic devices. In spite of significant contributions of research frontiers, these processes are still unveiled due to their inherent complexity of physicochemical behaviors, and gaps in academic research prevent their predictable simulation. To overcome these issues, a Korean plasma consortium began in 2009 with the principal aim to develop a realistic and ultrafast 3D topography simulator of semiconductor plasma processing coupled with zero-D bulk plasma models. In this work, aspects of this computational tool are introduced. The simulator was composed of a multiple 3D level-set based moving algorithm, zero-D bulk plasma module including pulsed plasma processing, a 3D ballistic transport module, and a surface reaction module. The main rate coefficients in bulk and surface reaction models were extracted by molecular simulations or fitting experimental data from several diagnostic tools in an inductively coupled fluorocarbon plasma system. Furthermore, it is well known that realistic ballistic transport is a simulation bottleneck due to the brute-force computation required. In this work, effective parallel computing using graphics processing units was applied to improve the computational performance drastically, so that computer-aided design of these processes is possible due to drastically reduced computational time. Finally, it is demonstrated that 3D feature profile simulations coupled with bulk plasma models can lead to better understanding of abnormal behaviors, such as necking, bowing, etch stops and twisting during high aspect ratio contact hole etch.

  • PDF

Study on the Simulation of the Intake and Exhaust Systems of a Gasoline Engine Using BOOST (BOOST를 이용한 가솔린 기관 흡·배기 계통의 시뮬레이션에 관한 연구)

  • Lee, Dae-Kwon;Yoon, Keon-Sik;Ryu, Soon-Pil;Woo, Seok-Keun;Seong, Hwal-Gyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.23-32
    • /
    • 2013
  • This paper presents the simulation of the multi-cylinder 4-stroke cycle spark-ignition engine using a commercial simulation tool, AVL BOOST. Various models were examined to select the appropriate models that would best serve to analyze the main components of the intake and exhaust systems-the plenum chamber, the muffler and the exhaust manifold branch junction. For the plenum chamber and the muffler, the tank model and the pipe model were tested. In order to analyze the exhaust manifold branch junction, a complicated model which reflects the actual shape and involves pressure drops was compared to a simplified one. The results show that both the tank model and the pipe model are applicable with satisfying accuracies for the plenum chamber and the muffler. However, the tank model is more desirable in regards to convenience in modeling and efficiency in calculation. Though both the complicated model and the simplified model show satisfying accuracies for the exhaust manifold branch junction, the simplified model is recommended in regards to convenience in modeling and efficiency in calculation.

NIRS APPLIED TO "PASTA FILATA" CHEESE ANALYSIS

  • Cattaneo, Tiziana M.P.;Maraboli, Adele;Giangiacomo, Roberto
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1519-1519
    • /
    • 2001
  • The aim of this work was to test the feasibility of NIRS in analysing textural characteristics of “Pasta Filata” cheese during the shelf-life. For this purpose, 128 samples of “Pasta Filata” cheese, subdivided into two sets on the basis of the wax used to avoid mechanical damages (paraffin, biodegradable wax), were analysed by using an InfraAlyzer 500 (Bran+Luebbe). Analyses were performed at room temperature. Samples were cut into small cylinders (D=3.2 cm, height = 1 cm), in agreement with literature information. Data were processed by using Sesame Software (Bran+Luebbe). Samples were analysed, during the shelf-life, at 90 and 120 days. In parallel, textural characteristics were detected carrying out a compression method by using an Universal Testing Machine Instron model 4301 (Instron Corporation, Canton, Massachusetts). As compression probe was used a cylinder (D = 5.8 cm, height = 3.7 cm) and a speed rate of 20mm/min was applied. The load at 20 mm of compression was recorded on sample cylinders of 1.7 cm (D) by 2 cm (height). Qualitative analysis of full spectra showed the possibility to gather samples on the basis of the days of shelf-life. The textural characteristics of cheese during the shelf-life was evaluated by comparing NIRS data with rheological results. The best correlation was obtained applying MLR to the first derivative of normalized absorbance values at seven wavelengths. Load values were plotted against the NIR prediction values based on first derivatives. NIRS proved to be an useful tool in classifying samples on the basis of the shelf-life period as well as in predicting their textural characteristics ($R^2$= 0.916, SEC = 0.192, SEP = 0.248, SEV = 0.345).

  • PDF

Application of CFD-FEM Coupling Methodology to Thermal Analysis on the Large-size Marine Diesel Engine (선박용 대형 디젤 엔진 열 해석을 위한 CFD-FEM 연계 방법의 적용)

  • Kim, Han-Sang;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • Temperatures of engine head and liner depend on many factors such as spray and combustion process, coolant passage flow and engine related structures. To estimate the temperature distribution of engine structure, multi-dimensional computational fluid dynamics (CFD) codes have been mainly adopted. In this case, it is of great importance to obtain the realistic wall temperature distribution of entire engine structure. In the present work, a CFD-FEM coupling methodology was presented to address this demand. This approach was applied to a real large-size marine diesel engine. CFD combustion and coolant flow simulations were coupled to FEM temperature analysis. Wall heat flux and wall temperature data were interfaced between combustion simulation and solid component temperature analysis via translator by a commercial CFD package named FIRE by AVL. Heat transfer coefficient and surface temperature data were exchanged and mapped between coolant flow simulation and FEM temperature analysis. Results indicate that there exists the optimum cell thickness near combustion chamber wall to reasonably predict the wall heat flux during combustion period. The present study also shows that the effect of cell refining on predicting in-cylinder pressure during combustion is negligible. Hence, the basic guidance on obtaining the wall heat flux needed for the reasonable CFD-FEM coupling analysis has been established. It is expected that this coupling methodology is a robust tool for practical engine design and can be applied to further assessment of the temperature distribution of other engine components.

Usefulness of Myotonometer for Measurement of Tissue Compliance on Medialis Gastrocnemius in Patients with Stroke (뇌졸중 환자에서 내측 비복근의 조직탄성 측정을 위한 Myotonometer의 유용성)

  • Bae, Sea-Hyun;Lee, Jeong-In;Kim, Kyung-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1129-1137
    • /
    • 2012
  • The aim of this study was to find useful parameters of the between myotonometer and surface electromyography(sEMG) on the medialis gastrocnemius of stroke patients and investigate between these parameters and modified Ashworth scale(MAS) relationship. 5 years clinical experience physical therapist using the Modified Ashworth Scale(MAS) was selected 15 patients with ankle spasticity and divided randomly MAS2, MAS3, MAS4 groups. Myotonometer and sEMG was measured during relaxed and maximum voluntary contractions of the gastrocnemius muscle. The results of this study, the higher MAS score was the lowered the relaxation and contraction state tissue compliance and muscle activity and in the correlation analysis the higher MAS score during voluntary contraction in the cylinder receiving low-intensity correlation could see that increased than relaxation. Therefore, the myotonometer is a useful clinical and research tool with spasticity muscle and can provide objective quantitative data about the efficacy of physical therapy interventions.

Planning of Dental Implant Placement Using 3D Geometric Processing and Finite Element Analysis (3차원 기하 처리와 유한요소 분석을 이용한 치아 임플란트 식립 계획 수립)

  • Park, Hyung-Wook;Park, Chul-Woo;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.253-261
    • /
    • 2012
  • In order to make dental implant surgery successful, it is important to perform proper planning for dental implant placement. In this paper, we propose a decent approach to dental implant placement planning based on geometric processing of 3D models of jawbones, a nerve curve and neighboring teeth around a missing tooth. Basically, the minimum enclosing cylinders of the neighboring teeth around the missing tooth are properly used to determine the position and direction of the implant placement. The position is computed according to the radii of the cylinders and the center points of their top faces. The direction is computed by the weighted average of the axes of the cylinders. For a cylinder whose axis passes the position along the direction, its largest radius and longest length are estimated such that it does not interfere with the neighboring teeth and the nerve curve, and they are used to select the size and type of an implant fixture. From the geometric and spatial information of the jawbones, the teeth and the fixture, we can construct the 3D model of a surgical guide stent which is crucial to perform the drilling operation with ease and accuracy. We have shown the validity of the proposed approach by performing the finite element analysis of the influence of implant placement on bone stress distribution. Adopted in 3D simulation of dental implant placement, the approach can be used to provide dental students with good educational contents. It is also expected that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

Analysis on the Explosion Risk Characteristic of Hydrogen blended Natural Gas (HCNG 혼합연료의 폭발 위험 특성 분석)

  • Kang, Seung-Kyu;Kim, Young-Gu;Kwon, Jeong-Rak
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2014
  • This study investigated the explosion characteristics of HCNG fuel using a simulation tool. The damage caused by the storage container explosion and vapor cloud explosion in a gas station was predicted. In case of an vapor cloud explosion in the HCNG station, 50~200kPa explosion pressure was predicted inside the station. When the cylinder explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. The damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.

Dynamic Characteristics of Pressure Propagation According to Boundary Condition Changes in a Transmission Line (경계조건변화에 따른 동력전달관로의 동특성)

  • 나기대;유영태;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.75-82
    • /
    • 2002
  • Design for a quiet operation of fluid power system requires the understanding of noise and vibration characteristics of the system. It's not easy to analyze noise problem in hydraulic cylinder used in typical actuator Because they've got complex fluid dynamics. One of the fundamental problems associated with the hydraulic system is the pulsating flow in pipe lines, which can be tackled by the analysis under simplifying assumptions. The present study focuses on theoretic analysis and experimental study on the dynamics of laminar pulsating flow in a circular pipe. We analyze the propagation characteristics of the pressure pulse within a hydraulic pipe line taking into account the pulsating flow frequency variation. We also measure instantaneous pressure pulses within pipe line to identify the transfer functions. We conduct series of experiments to investigate the propagation characteristics of pressure pulse for various pressure of pulsating flow. The working fluid of the present study is ISO VG46 and the temperature ranges from 20 to $60^{\circ}$ with normal pressure at 4000kPa. The flow rate is measured by using an ultrasonic flow meter. Pressures at fixed upstream and downstream positions are measured concurrently. The electric signals of the pressure sensor are stored and analyzed using a system analyzer(PKE 983 series). The frequency is varied in the range of 10~500Hz. The Reynolds number is kept below 2,000. In the present study, boundary condition was varied by installing a surge tank and an orifice at the end of pipe. Experimental and theoretical results were compared each other under various boundary conditions.

CFD Analysis on Discharge Passage Flow of Hydrogen Reciprocating Compressor (왕복동식 수소압축기의 토출구 유동에 관한 CFD해석)

  • Lee, Gyeong-Hwan;Rahman, Mohammad-Shiddiqur;Chung, Han-Shik;Jung, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.561-566
    • /
    • 2008
  • The reciprocating compressor is widely used in the industry field, because it has simple principle and high efficiency. In this work, in order to improve design of discharge passage line in hydrogen compression system Numerical analysis was conducted. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including velocity, pressure and turbulence kinetic energy distribution of hydrogen gas going out from the cylinder to discharge-path line are presented in this paper. Discharge-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows velocity, pressure and turbulent kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement might be done.

  • PDF

FEM Electrical Resistivity Modeling in Cylindrical Coordinates (원통 좌표계에서의 전기비저항 유한요소 모델링)

  • Choi Wonseok;Kim Jung-Ho;Park KwonGyu;Kim Hak-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.206-216
    • /
    • 2002
  • The finite element method (FEM), a powerful numerical modeling tool for solving various engineering problems, is frequently applied to three-dimensional (3-D) modeling thanks to its capability of discretizing and simulating the shape of model with finite number of elements. Considering the accuracy of the solution and computing time in modeling of engineering problems, it is preferable to construct physical continuity and simplify mesh system. Although there exist systematic mesh generation systems for arbitrary shaped model, it is hard to model a simple cylinder in terms of 3-D coordinate system especially in the vicinity of the central axis. In this study I adopt cylindrical coordinate system for modeling the 3-D model space and define the origin of the coordinates with mathematically clear coordinate transformation. Since we can simulate the whole space with hexahedral elements, the cylindrical coordinate system is effective in handling the 3-D model structure. The 3-D do resistivity modeling scheme developed in this study provides basie principle for borehole-to-surface resistivity survey, which can be a useful tool for the application to environmental problem.