• 제목/요약/키워드: Cylinder Head

검색결과 260건 처리시간 0.018초

내연기관 실린더 헤드 가스켓의 밀봉에 관한 조사(1) (Review of the Sealing on the Cylinder Head Gasket in the InternalCombustion Engine(1))

  • 오성환
    • 오토저널
    • /
    • 제7권4호
    • /
    • pp.9-17
    • /
    • 1985
  • 엔진이 고성능화가 되어감에 따라 실린더 헤드 가스켓 재료나 밀봉(sealing) 구조가 계속해서 변 천되어 가고 있고 이는 엔진의 성능향상이 헤드 가스켓에 의해 크게 좌우된다는 것을 알려준다. 그러나 종래에는 헤드와 엔진보아(bore) 간의 밀봉문제가 가스켓만의 문제로 해서 검토하는 경우 가 많았다. 거기에다 검토 되어지는 것도 엔진의 개발 최종단계에서 이기 때문에 엔진을 개선할 수 없어 여러 가지 문제점을 가스켓이 부담하는 경우가 많았다. 그에 의한 무리한 대책은 나중 에 여러 가지 문제를 야기하는 결과를 가져다 준다. 그래서 여기서는 실린더 헤드 가스켓에 관 한 전반적인 내용을 서술하고자 한다.

  • PDF

소형박용 디젤엔진의 전열특성 (Characteristics of Heat Transfer for Small-size Marine Diesel Engine)

  • 최준섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.36-42
    • /
    • 1996
  • Analysis of heat transfer on small-size Diesel engine is required for the development of high performance and efficiency engine. This basic study aims to establish heat transfer technique for marine Diesel engine. The main results from this study are as follows : 1) Overall engine heat transfer correlation of Re-Nu. 2) Radiant heat flux as fraction of total heat flux over the load range of several different Diesel engine. 3) Characteristics of heating curves on piston, cylinder liner and head. 4) Surface heat flux versus injection timing.

  • PDF

자동차용 공기압축기의 구조해석 (Structure Analysis of Vehicle Air Compressor)

  • 원종진;이종선;흥석주;이현곤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.45-50
    • /
    • 1999
  • The object of this study is structure analysis of vehicle air compressor. Structure analysis is compose to nodal solution and element solution using ANSYS code. Then analysis is partition to head part, cylinder and piston part of vehicle air compressor. Stress and strain results are satisfy to Von Mises yield criterion.

  • PDF

샤워헤드 막냉각면에서의 온도장 및 막냉각효율 측정 (Measurements of Temperature Field and Film-Cooling Effectiveness for a Shower-Head Film Cooling)

  • 정철희;이상우
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.177-187
    • /
    • 2000
  • Measurements of temperature fields and film-cooling effectiveness have been conducted for a shower-head film cooling on the leading edge of a blunt body, which simulates a first-stage turbine stator. In this study, three injection cases are employed for an average blowing ratio based on freestream velocity, M, of 0.5, 1.0 and 1.5. Two (Case 1), four (Case 2) and six (Case 3) rows of normal holes are symmetrically drilled on the three tested circular-cylinder leading edges. The measurements show that regardless of M, the film-cooling effectiveness increases as the injection row is situated at farther downstream location. In Case 1, the film-cooling effectiveness is highest for M = 0.5 and lowest for M = 1.5. On the contrary, in Case 3, the film-cooling effectiveness is highest for M = 1.0 and lowest for M = 0.5. When M = 0.5, the film coverage by the first row of the injection holes deteriorates as the number of the injection row increases. In particular, the film-cooling effectiveness due to the injection through the first row of the holes in Case 3, has a nearly zero value.

엔진 내 냉각수 유동형태가 연소실 벽면온도에 미치는 영향에 관한 연구 (Effect of Coolant Flow Pattern on Metal Temperature of Combustion Chamber)

  • 민병순;최재권
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.14-21
    • /
    • 1993
  • The effect of coolant flow pattern on the metal temperature of the combustion chamber was studied in 1.5L and 1.8L gasoline engines. One of the main important points in the design of the water jacket is the increase of the coolant flow velocity. In this paper, the water jackets of the cylinder head and the cylinder block were visualized for the purpose of improving the coolant flow pattern. By the use of this technique, the optimal design of the size and th location of the water transfer fole was possible. And, to lower the metal temperatures of the thermally critical parts, the drilled water passages were employed. To investigate of effect of the improved flow pattern and the drilled water passages, the metal temperatures of the combustion chamber were measured. As a result of the temperature measurement, it was found out that both the change of flow pattern and the drilled water passages have significant effect on the reduction of the peak metal temperature.

  • PDF

액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구 (A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature)

  • 이종구;이종민;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

이온전류법에 의한 가솔린엔진 연소실 형상별 급속연소효과 연구 (A Study on the Effect of Fast Burn for Different Combustion Chamber Geometries of Gasoline Engine Using an Ion Current Method)

  • 강건용;서승우;정동수;장영준
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1633-1639
    • /
    • 1993
  • 본 연구에서는 급속연소기술의 가솔린엔진에 적용을 목적으로 흡입과정시 강한 와류(swirl)를 생성하는 마스크부착 헤드(masked shroud head, MSH)형을 급속연 소형으로 제작하여 마스크부착 헤드형에서의 급속연소효과를 이온전류법에 의한 화염 속도를 측정하므로서 규명하려한다. 이온전류는 이온탐침계(ion probe)를 연소실 표면의 두 지점에 설치하여 검출하며, 이온전류 신호를 정성적인 방법으로 검증한 후 표준 헤드형과 마스크부착헤드형을 장착한 엔진에 대해서 화염전파 속도를 비교 측정 한다. 측정된 화염 전파속도는 정확한 연소특성 분석을 위해 각 사이클에서의 값을 표본으로 하는 통계적 방법으로 처리한다.

고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구 (Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector)

  • 김형준;박수한;이창식
    • 한국분무공학회지
    • /
    • 제14권3호
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF

8홀 노즐을 적용한 2리터 급 디젤 엔진 연소 최적화 (Combustion Optimization of Diesel 2.0 Liter Class Engine with 8-hole Injector Nozzle)

  • 권순혁;김민수;최민선;조성환
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.73-79
    • /
    • 2008
  • Atomization speed of diesel fuel injected from 8-hole nozzle is faster than that of 7-hole nozzle because the hole diameter of 8-hole nozzle is smaller than that of 7-hole nozzle. But both insufficient distance between the fuel sprays and short penetration of injected sprays through 8-hole nozzle hole cause many harmful effects on combustion. In this study, we installed the 8-hole injectors to diesel 2.0 liter class engine, and optimized in-cylinder swirl and penetration via selecting and matching proper cylinder head and combustion bowl. Through this process, we found out the performance and emission potential of 8-hole nozzle installed engine are better than those of 7-hole nozzle installed one.