• Title/Summary/Keyword: Cyclotron resonance

Search Result 169, Processing Time 0.026 seconds

Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

  • Kim, Eun-Hwa;Johnson, Jay R.;Lee, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.289-295
    • /
    • 2015
  • By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

Effect of surface modification on adhesion of copper films on PET prepared by ECR-MOCVD (ECR 상온화학증착법에 의해 PET기판에 제조된 구리 박막의 표면전처리에 따른 접착력 특성)

  • Hyun, Jin;Byun, Dong-Jin;Lee, Jung-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.210-210
    • /
    • 2003
  • ECR(Electron Cyclotron Resonance)은 전자기장에 의한 회전주파수와 전원으로 가해지는 마이크로웨이브(microwave)의 주파수가 일치할 때 발생하는 공진(resonance)현상이다. ECR에 의해 형성된 고밀도, 고에너지의 플라즈마가 상온하에서도 표면에너지가 낮은 고분자수지상에 접착력과 내구성 및 성능이 우수한 금속박막을 형성시킬 수 있는 특징을 지니고 있다. [1] 이러한 고분자수지 표면에 제조되는 금속박막소재는 반도체산업을 비롯하여, 박막전지, 전자파 차폐 등의 다양한 용도로 개발되고 있다. 그러나, 고분자수지와 금속박막계면간의 접착성의 저하로 후처리 공정에서 외부의 응력을 받게되면 막이 쉽게 탈리되는 문제점이 대두되었고, 이에 대한 개선이 요구되고 있다. 따라서, 본 연구에서는 공업적으로 많이 사용되는 표면 전처리방법을 통하여 구리 박막의 접착력을 향상시키고자 하였다. 상온화학증착 방법에 의해 고분자수지표면에 구리금속박막을 제조하고 여러 가지 표준방법을 사용하여 고분자수지와 구리박막간의 접착특성을 조사하였다.

  • PDF

Electrical Properties of Al2O3 Films Grown by the Electron Cyclotron Resonance Plasma-Enhanced Atomic Layer Deposition (ECR-PEALD) and Thermal ALD Methods (전자 사이클로트론 공명 플라즈마와 열 원자층 증착법으로 제조된 Al2O3 박막의 물리적·전기적 특성 비교)

  • Yang, Dae-Gyu;Kim, Yang-Soo;Kim, Jong-Heon;Kim, Hyoung-Do;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.295-300
    • /
    • 2017
  • Aluminum-oxide($Al_2O_3$) thin films were deposited by electron cyclotron resonance plasma-enhanced atomic layer deposition at room temperature using trimethylaluminum(TMA) as the Al source and $O_2$ plasma as the oxidant. In order to compare our results with those obtained using the conventional thermal ALD method, $Al_2O_3$ films were also deposited with TMA and $H_2O$ as reactants at $280^{\circ}C$. The chemical composition and microstructure of the as-deposited $Al_2O_3$ films were characterized by X-ray diffraction(XRD), X-ray photo-electric spectroscopy(XPS), atomic force microscopy(AFM) and transmission electron microscopy(TEM). Optical properties of the $Al_2O_3$ films were characterized using UV-vis and ellipsometry measurements. Electrical properties were characterized by capacitance-frequency and current-voltage measurements. Using the ECR method, a growth rate of 0.18 nm/cycle was achieved, which is much higher than the growth rate of 0.14 nm/cycle obtained using thermal ALD. Excellent dielectric and insulating properties were demonstrated for both $Al_2O_3$ films.

Advanced Analytical Techniques for Dissolved Organic Matter and Their Applications in Natural and Engineered Water Treatment Systems (최근 용존 유기물 분석 기법 및 자연환경과 수 처리 시스템 내 활용방안)

  • Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.31-42
    • /
    • 2022
  • Dissolved organic matter (DOM), which changes according to various factors, is ubiquitously present from natural environments to engineered treatment systems. Only limited information is available regarding the environmental functions of DOM after bulk analyses are only applied for characterization. In this paper, latest DOM analytical techniques are briefly introduced, which include fluorescence excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), size-exclusion chromatography with an organic carbon detector (SEC-OCD), carbon/nitrogen stable-isotope ratio, and Fourier transform-ion cyclotron resonance-mass spectroscopy (FT-ICR-MS). Recent examples of using advanced analyses to interpret the phenomena associated with DOM occurring in natural and engineered systems are presented here. Through EEM-PARAFAC, different components like protein-like, fulvic-like, and humic-like can be identified and tracked individually through the investigated systems. SEC-OCD allows researchers to quantify different size fractions. FT-ICR-MS provides thousands of molecular formulas present in bulk DOM samples. Lastly, carbon/nitrogen stable-isotope ratio offers reasonable tools for tracking the sources in environments. We also discuss the advantages and weakness of the above-mentioned characterizing tools. Specifically, they focus on single environmental factors (different sourced-DOM and interaction of sediment-pore water) or simple changes after individual treatment processes. Through collaboration with the advanced techniques later, they help the researchers to better understand environmental behaviors in aquatic systems and serve as essential tools for addressing various pending problems associated with DOM.

Recent progress in the theoretical understanding of relativistic electron scattering and precipitation by electromagnetic ion cyclotron waves in the Earth's inner magnetosphere

  • Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.45-60
    • /
    • 2019
  • The Earth's outer radiation belt has long received considerable attention mainly because the MeV electron flux in the belt varies often dramatically and at various time scales. It is now widely accepted that the wave-particle interaction is one of the major mechanisms responsible for such flux variations. The wave-particle interaction can accelerate electrons to MeV energies, explaining the observed flux increase events, and can also scatter the electrons' motion into the loss cone, resulting in atmospheric precipitation and thus contributing to flux dropouts. In this paper, we provide a review of the current state of research on relativistic electron scattering and precipitation due to the interaction with electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere. The review is intended to cover progress made over the last ~15 years in the theory and simulations of various issues, including quasilinear resonance diffusion, nonlinear interactions, nonresonant interactions, effects of finite normal angle on pitch angle scattering, effects due to rising tone emission, and ways to scatter near-equatorial pitch angle electrons. The review concludes with suggestions of a few promising topics for future research.

A Study on SiC Buffer Layer Prepared by Ultra High Vacuum Electron Cyclotron Resonance CVD (초고진공 전자공명 플라즈마를 이용한 SiC buffer layer 형성에 관한 연구)

  • Joen, Woo-Gon;Pyo, Jae-Hwak;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.326-328
    • /
    • 1995
  • SiC buffer layers were grown on Si(100) substrates by ultra-high-vacuum electron cryclotron resonance plasma (UHV ECR plasma) from $CH_4/H_2$ mixture at 700$^{\circ}C$. The electron densities and temperature were measured by single probe. The axial plasma potentials measured by emissive probe had the double layer structure at positive substrate bias. Piranha cleaning was carried out as ex-situ wet cleaning. Clean and smooth silicon surface were prepared by in-situ hydrogen plasma cleaning at 540$^{\circ}C$. A short exposure to hydrogen plasma transforms the Si surface from 1$\times$1 to 2$\times$1 reconstruction. It was monitored by reflection high energy electron diffraction (RHEED). The defect densities were analysed by the dilute Schimmel etching. The results showed that the substrate bias is important factor in hydrogen plasma cleaning. The low base pressure ($5\times10^{-10}$ torr) restrains the $SiO_2$ growth on silicon surface. The grown layers showed different characteristics at various substrate bias. RHEED and K-ray Photoelectron spectroscopy study showed that grown layer was SiC.

  • PDF

Study on the Surface Reaction of Pt thin Film with $SF_6/Ar and Cl_2/Ar$ plasma gases (Pt 박막의 $SF_6/Ar과 Cl_2/Ar4$ 플라즈마 가스와의 표면반응에 관한 연구)

  • 김상훈;주섭열;안진호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.110-113
    • /
    • 2001
  • ECR(electron cyclotron resonance) 플라즈마 식각 장비를 이용하여 SF$_{6}$/Ar과 Cl$_2$/Ar 플라즈마 가스에 대한 Platinum (이하 Pt) 박막의 식각 특성을 연구하였다. Pt 박막의 경우 Cl$_2$ 가스 혼합물에 대한 식각 특성은 많이 보고가 되어 왔으나 상대적으로 Fluorine 계열의 가스 혼합물에 의한 시각 연구는 미비하였다. 본 연구에서는 SF$_{6}$/Ar과 Cl$_2$/Ar 플라즈마 가스를 이용한 Pt 박막의 식각 특성을 비교 분석하고 각각의 가스와 Pt 박막과의 반응을 분석, 식각 특성을 개선하고자 하였다.

  • PDF

Design study of the Vacuum system for RAON accelerator using MonteCarlo method

  • Kim, Jae-Hong;Jeon, Dong-O
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.70.1-70.1
    • /
    • 2015
  • The facility for RAON superconducting heavy-ion accelerator at a beam power of up to 400 kW will be produced rare isotopes with two electron cyclotron resonance (ECR) ion sources. Highly charged ions generated by the ECR ion source will be injected to a superconducting LINAC to accelerate them up to 200 MeV/u. During the acceleration of the heavy ions, a good vacuum system is required to avoid beam loss due to interaction with residual gases. Therefore ultra-high vacuum (UHV) is required to (i) limit beam losses, (ii) keep the radiation induced within safe levels, and (iii) prevent contamination of superconducting cavities by residual gas. In this work, a RAON vacuum design for all the accelerator system will be presented along with Monte Carlo simulation of vacuum levels in order to validate the vacuum hardware configuration, which is needed to meet the baseline requirements.

  • PDF

고온 연소 합성법을 이용한 탄화규소(SiC)의 합성 및 핵연료 도포 연구

  • Choi, Yong;Lee, Jeong-Won;Lee, Young-Woo;Son, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.225-230
    • /
    • 1996
  • 탄화규소(SiC)가 도포된 핵연료 제조를 위해 고온 연소 합성법(Self-propagating High Temperature Synthesis, SHS)이 적용되었으며, 반응물로 규소(Si) 분말, 규소 박막 (Si-thin film), 흑연 분말과 카본(C) 화이버가 사용되었다. 규소 박막은 프라즈마가 강화된 화학증착법(a microwave pulsed electron cyclotron resonance plasma enhanced chemical vapor deposition)으로 준비되었다. 그 결과 규소와 탄소의 고온 연소 합성반응 생성물은 반응물이 분말이거나 박막에 관계없이. 탄화규소(SiC)가 합성되었으며, 생성물의 형상(morphology)은 초기 탄소의 형상에 의존하였다. 본 연구를 통해 고온 연소 합성법이 탄화규소와 탄소가 도포된 핵연료 제조에 적용 가능함을 알 수 있었다.

  • PDF