• 제목/요약/키워드: Cyclins

검색결과 54건 처리시간 0.018초

Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Regulates Neuroblastoma Cell Proliferation through p21

  • Jung, Heekyung;Shin, Joo-Hyun;Park, Young-Seok;Chang, Mi-Sook
    • Molecules and Cells
    • /
    • 제37권12호
    • /
    • pp.881-887
    • /
    • 2014
  • Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the $G_1$ phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the $G_1$ phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.

The Role of Cell Cycle Regulators in Normal and Malignant Cell Proliferation

  • Lee, Jin-Hwa
    • 대한의생명과학회지
    • /
    • 제16권2호
    • /
    • pp.71-74
    • /
    • 2010
  • Cell proliferation is governed by precise and orderly process the regulation of which involves many different proteins. The key enzyme for cell growth and arrest is cyclin dependent kinases (cdks). In human cells, several cdks orchestrate four distinct cell cycle phases (M, $G_1$, S and $G_2$ ) and they sequentially operate in an order of cdc1, cdk4, cdk6 and cdk2. The regulatory components of cdks consist of cyclins and two family of cdk inhibitors, INK4 (inhibitors of cdk4) and KIP (kinase inhibitor protein). $G_1$ regulatory molecules for cdk mainly respond to environmental cues of mitogenic and anti-mitogenic stimuli and therefore influence activities of $G_1$ cdks, namely, cdk4/6 and cdk2. $G_1$ inhibitors include $p21^{CIP}$ and $p27^{KIP1}$. Between them, $p27^{KIP1}$ has attracted attentions of many researchers because of its characteristic regulatory features and diverse functions. Besides, the role of $p27^{KIP1}$ in cancer development warrants further studies in the future. Therefore, this review will focus on the recent findings and especially on the complexity of regulatory mechanisms of $p27^{KIP1}$.

Tannic acid-induced apoptosis in FaDu hypopharyngeal squamous cell carcinoma

  • Ta, Loan Thi;Nguyen, Trang Thi Kieu;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • 제44권2호
    • /
    • pp.43-49
    • /
    • 2019
  • Tannic acid (TA) is a water-soluble polyphenol compound found in various herbal plants. We investigated the chemopreventive effects of TA on FaDu hypopharyngeal squamous carcinoma cells. In an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, TA showed dose-dependent cytotoxicity with a half maximal inhibitory concentration (IC50) of 50 ?M. Cell cycle analysis and immunofluorescence imaging demonstrated that under low-dose ($25{\mu}M$) treatment, FaDu cells were arrested in G2/M phase, and as the dose of TA was increased, apoptosis was induced with the increase of cell population at sub-G1 phase. The expressions of various cyclins, including cyclin D1 and cyclin-dependent kinases (CDK-1 and CDK-2), were down-regulated at low doses of TA, whereas apoptotic effectors such as cleaved caspase 3, cleaved caspase 7, and poly (ADP-ribose) polymerase (PARP) were expressed in a dose-dependent manner in Western blotting. In addition, TA-induced apoptosis of FaDu cells might be mediated by the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway, with the upregulation of p-AKT/p-PKB (phosphorylated protein kinase B) and p-ERK. Overall, our data support the hypothesis that TA is a potential candidate agent for the treatment of hypopharyngeal cancer.

TSPAN12 Precedes Tumor Proliferation by Cell Cycle Control in Ovarian Cancer

  • Ji, Guohua;Liang, Hongbin;Wang, Falin;Wang, Nan;Fu, Songbin;Cui, Xiaobo
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.557-567
    • /
    • 2019
  • TSPAN12, a member of the tetraspanin family, has been highly connected with the pathogenesis of cancer. Its biological function, however, especially in ovarian cancer (OC), has not been well elucidated. In this study, The Cancer Genome Atlas (TCGA) dataset analysis revealed that upregulation of TSPAN12 gene expression was significantly correlated with patient survival, suggesting that TSPAN12 might be a potential prognostic marker for OC. Further exploration showed that TSPAN12 overexpression accelerated proliferation and colony formation of OVCAR3 and SKOV3 OC cells. Knockdown of TSPAN12 expression in A2780 and SKOV3 cells decreased both proliferation and colony formation. Western blot analysis showed that several cyclins and cyclin-dependent kinases (CDK) (e.g., Cyclin A2, Cyclin D1, Cyclin E2, CDK2, and CDK4) were significantly involved in the regulation of cell cycle downstream of TSPAN12. Moreover, TSPAN12 accelerated mitotic progression by controlling cell cycle. Thus, our data demonstrated that TSPAN12 could be a novel molecular target for the treatment of OC.

Hydroxyzine Induces Cell Death in Triple-Negative Breast Cancer Cells via Mitochondrial Superoxide and Modulation of Jak2/STAT3 Signaling

  • Shakya, Rajina;Park, Gyu Hwan;Joo, Sang Hoon;Shim, Jung-Hyun;Choi, Joon-Seok
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.585-592
    • /
    • 2022
  • Treatment of triple-negative breast cancer (TNBC) has been limited due to the lack of molecular targets. In this study, we evaluated the cytotoxicity of hydroxyzine, a histamine H1 receptor antagonist in human triple-negative breast cancer BT-20 and HCC-70 cells. Hydroxyzine inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay showed that hydroxyzine induced apoptosis. The hydroxyzine-induced apoptosis was accompanied down-regulation of cyclins and CDKs, as well as the generation of reactive oxygen species (ROS) without cell cycle arrest. The effect of hydroxyzine on the induction of ROS and apoptosis on TNBC cells was prevented by pre-treatment with ROS scavengers, N-acetyl cysteine or Mito-TEMPO, a mitochondria-targeted antioxidant, indicating that an increase in the generation of ROS mediated the apoptosis induced by hydroxyzine. Western blot analysis showed that hydroxyzine-induced apoptosis was through down-regulation of the phosphorylation of JAK2 and STAT3 by hydroxyzine treatment. In addition, hydroxyzine induced the phosphorylation of JNK and p38 MAPK. Our results indicate that hydroxyzine induced apoptosis via mitochondrial superoxide generation and the suppression of JAK2/STAT3 signaling.

Domperidone Exerts Antitumor Activity in Triple-Negative Breast Cancer Cells by Modulating Reactive Oxygen Species and JAK/STAT3 Signaling

  • Rajina Shakya;Mi Ran Byun;Sang Hoon Joo;Kyung-Soo Chun;Joon-Seok Choi
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.692-699
    • /
    • 2023
  • The lack of molecular targets hampers the treatment of triple-negative breast cancer (TNBC). In this study, we determined the cytotoxicity of domperidone, a dopamine D2 receptor (DRD2) antagonist in human TNBC BT-549 and CAL-51 cells. Domperidone inhibited cell growth in a dose- and time-dependent manner. The annexin V/propidium iodide staining showed that domperidone induced apoptosis. The domperidone-induced apoptosis was accompanied by the generation of mitochondrial superoxide and the down-regulation of cyclins and CDKs. The apoptotic effect of domperidone on TNBC cells was prevented by pre-treatment with Mito-TEMPO, a mitochondria-specific antioxidant. The prevention of apoptosis with Mito-TEMPO even at concentrations as low as 100 nM, implies that the generation of mitochondrial ROS mediated the domperidone-induced apoptosis. Immunoblot analysis showed that domperidone-induced apoptosis occurred through the down-regulation of the phosphorylation of JAK2 and STAT3. Moreover, domperidone downregulated the levels of D2-like dopamine receptors including DRD2, regardless of their mRNA levels. Our results support further development of DRD2 antagonists as potential therapeutic strategy treating TNBC.

인체 폐암세포에서 인삼사폐탕에 의한 Cdk inhibitor p27의 발현 증가 및 pRB의 인산화 억제 (Induction of Cdk inhibitor p27 and Inhibition of pRB Phosphorylation by Insamsapye-tang Treatment in Human Lung Cancer A549 Cells)

  • 이민우;서창훈;박철;이원호;최영현;박동일
    • 동의생리병리학회지
    • /
    • 제17권1호
    • /
    • pp.213-219
    • /
    • 2003
  • We investigated the effects of Insamsapye-tang (ISSPT) water extract on the cell proliferation of human lung carcinoma A549 cells. ISSPT treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by ISSSPT treatment was associated with morphological changes such as membrane shrinking and cell rounding up. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by ISSPT treatment in a concentration-dependent manner. ISSPT treatment induced the levels of tumor suppressor p53 protein and cyclin-dependent kinase (Cdk) inhibitor p27 without significant alteration of cyclins and Cdks expression. In addition, ISSPT treatment resulted in down-regulation of phosphorylated retinoblastoma protein (pRB). However, the levels of p130, the pRB family protein, and transcription factors. E2F-1 and E2F-4. were remained unchanged. The present results indicated that ISSPT-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression and the induction of apoptosis, and we suggest that ISSPT will be an effective therapeutic agent on human lung cancer.

기계적 응력이 치주인대세포의 세포증식 및 세포주기 조절인자들의 발현에 미치는 영향 (Effect of Mechanical Stress on the Proliferation and Expression of Cell Cycle Regulators in Human Periodontal Ligament Cells)

  • 유형근;신형식;이진;민병무
    • Journal of Periodontal and Implant Science
    • /
    • 제29권3호
    • /
    • pp.593-607
    • /
    • 1999
  • 치주인대세포는 치주인대의 유지와 개조에 있어서 중요한 역할을 담당하는 섬유아세포성 세포로서, 세포에 가해진 여러가지 조건에 따라 다양한 표현형의 변화를 나타내는 것으로 알려져 있다. 기계적 응력은 치주인대세포의 세포증 식과 밀접히 연관되어 있는 것으로 알려져 있으며, 이는 세포주기 조절인자들의 발현을 증가 시킴으로써 이루어질 것으로 생각되나 그 자세 한 작용기전은 알려져 있지 않다. 그러므로 이 연구의 목적은 기계적 응력이 사람 치주인대세 포의 세포증식과 세포주기 조절인자의 발현에 미치는 영향을 연구하기 위하여 사람 치주인대 세포에 기계적 응력을 가한 후 세포증식을 관찰하고 , 세포주기조절인자들인 p 53 , $p21^{WAF1/CIP1}$ cyclin-dependent kinases(cdks), cyclins 및 proliferating cell nuclear antigen(PCNA)의 단백질 발현 변화를 연구하였다. 본 연구에 사용한 사람 치주인 대세포는 교정치료를 목적으로 발거한 건전한 사람 소구치의 치주인대로부터 explantation culture하여 얻은 후 계대배양을 시행하여 제6 계대의 세포를 사용하였다. 배양한 사람 치주인 대세포를 55-mm Petriperm dish당 $1{\times}10^4$ 개를 분주하고, dish당 1kg의 기계적 응력을 가하면서 12일동안 세포배양을 시행하였다. 사람 치주인대세포의 세포증식은 기계적 응력을 가한 후 8-12일 사이에 현저히 증가하였으며, PCNA 단백질의 발현은 기계적 응력을 가한 후 6-10일 사이에 현저히 증가하였다. 또한 기계적 응력은 사람 치주 대세포의 cdk4, cdk6, cdk2 및 cyclin D1 단백질의 발현을 다소 증가 시켰으나, p53 및 $p21^{WAF1/CIP1}$ 단백질의 발현은 큰 변화가 없었다. 이상의 결과 서 기계적 응력은 사람 치주인대세포 의 p53 및 $p21^{WAF1/CIP1}$ 단백질 발현의 변화 없이 cdks 단백질 발현을 증가시킴으로써 세포증식을 증가시키는 것으로 생각된다.

  • PDF

Inhibition of Cellular Proliferation by p53 dependent Apoptosis and G2M Cell Cycle Arrest of Saussurea lappa CLARKE in AGS Gastric Cancer Cell Lines

  • Jeong Han Su;Kim Dong Jo;Heo Geum Jeong;Nam Chang Gyu;Go Seong Gyu
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1186-1191
    • /
    • 2004
  • The root of Saussurea lappa includes sesquiterpene lactones such as costunolide and dehydrocostus lactone, and has been shown to be anti-tumorigenic with being used in traditional medicinal therapy in the Eastern Asia. However, the molecular basis of the effects of Saussurea lappa on fate of gastric carcinoma, which incur very frequently in the area, has not been well identified. In this study, the cytostatic effects of Saussurea lappa were examined using gastric AGS cancer cells. Cell viability was dramatically reduced by Saussurea lappa, in a dose-dependent manner. As time passed after its treatment, apoptotic population was increased and clearly showed G2-arrest. Being consistent, its treatment resulted in maintaining of G1 and S-phase cyclins D1, E, and A even until a significant apoptotic population was observed, for example, at 24h after treatment. However, G2/M phase cyclin B1 was reduced even at 12 h after treatment. In addition, its treatment increased expression of p53, p21/sup Wafl / cyclin dependent kinase inhibitor (CKI), and Bax, resulted in cleavages of procaspase 3 and poly ADP-ribose polymerase(PARP), indicating that such G2 arrest- and apoptosis-related molecules are involved. Therefore, these suggest that extracts of Saussurea lappa root may be a safer and effective reagent to deal with gastric cancers either by traditional herbal therapy or combinational therapy with conventional chemotherapy.

오령산에 의한 고포도당 유도 사구체간질세포 이상증식 개선효과 (Oryeong-san Ameliorates High Glucose-induced Mesangial Cell Proliferation)

  • 윤정주;이윤정;이소민;김대환;이호섭;강대길
    • 대한한의학방제학회지
    • /
    • 제21권2호
    • /
    • pp.53-62
    • /
    • 2013
  • Objectives : Diabetic nephropathy is associated with morbidity and mortality of diabetes mellitus patients. Mesangial cell proliferation is known as the major pathologic features such as glomerulosclerosis. Oryeong-san, Korean formula, is widely used for the treatment of nephrosis, edema, and uremia. Oryeong-san is composed of five herbs: Alismatis Rhizoma, Polyporus, Atractylodis Rhizoma Alba, Hoelen, and Cinnamomi Cortex. Methods : The present study was performed to investigate potent inhibitory effect of Oryeong-san on high glucose (HG)-induced rat mesangial cells (RMC) proliferation. Results : RMC proliferation under 25 mM glucose was significantly accelerated compared with 5.5 mM glucose, which was inhibited by Oryeong-san in dose dependent manner. Pre-treatment of Oryeong-san induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21waf1/cip1 and p27kip1 expression. In addition, Oryeong-san reduced HG-induced RMC proliferation by suppressed the mitogen-activated protein kinase (MAPK) phospholyration such as extracellular signal regulated kinase (ERK), Jun N-terminal Kinase (JNK), and p38. Oryeong-san significantly suppressed HG-induced ROS production. Conclusions : Oryeong-san consequently inhibited HG-induced mesangial cell proliferation through the inhibition of MAPK and ROS signaling pathway. These results suggest that Oryeong-san may be effective in the treatment of renal dysfunction leading to diabetic nephropathy.