• 제목/요약/키워드: Cyclic wet and dry method

검색결과 11건 처리시간 0.024초

인공해수 건습반복조건에 따른 콘크리트배합별 부식촉진시험법과 염화물 침투해석평가 (Evaluate the Concrete mix by Type Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Cyclic Wet and Dry Condition)

  • 박상순;김민욱
    • 한국건설순환자원학회논문집
    • /
    • 제1권3호
    • /
    • pp.211-218
    • /
    • 2013
  • 해양환경 조건 중 건습반복환경인 간만대는 구조물내 철근부식이 가장 빨리 일어나는 것으로 알려져 있다. 때문에 부식촉진시험 방법 중 간만대 환경을 재현한 시험방법이 가장 활발하게 진행되어왔다. 그러나 많은 연구들이 부식임계농도 추정이나 염화물침투해석에 집중되어 있는 상황이다. 본 논문에서는 건습반복조건의 환경을 재현하여 구조물내 철근부식촉진시험과 염화물 침투해석을 실시하였다. 배합에 사용된 재료의 종류를 변수로 시험을 실시하였으며, 철근부식모니터링 방법으로 갈바닉 전위측정법과 반전지전위법을 사용하여 철근부식의 유무를 판단하였다. 부식촉진시험결과 각 배합별로 부식기간이 차이가 났으며, 순서는 OPC > FA > BS > 고강도 순으로 나타났다. 부식촉진시험과 동일한 조건으로 FEM 내구성 해석 프로그램인 DuCOM, RCPT 시험을 실시하여 실험결과 값에 대한 타당성을 입증하였다.

Monitoring of Corrosion Rates of Carbon Steel in Mortar under a Wet-Dry Cyclic Condition

  • Kim, Je-Kyoung;Kang, Tae-Young;Moon, Kyung-Man
    • 전기화학회지
    • /
    • 제10권3호
    • /
    • pp.179-183
    • /
    • 2007
  • The corrosion behavior of metal covered with mortar under a wet-dry cyclic condition were investigated to apply for the measurement of corrosion rates of reinforcing steel in concrete structure. The carbon steel in mortar having t=3 mm cover thickness was exposed to the alternate condition of 6 h immersion in chloride containing solution and 18 h drying at $25^{\circ}C$ and 50%RH. The electrochemical phenomena of a carbon steel and mortar interface was explained by an equivalent circuit consisting of a solution resistance, a charge transfer resistance and a CPE(Constant Phase Element). The corrosion rates were monitored continuously during exposure using an AC impedance technique. Simultaneously, the current distribution over the working electrode during impedance measurement was analyzed from the phase shift, $\theta$, in an intermediate frequency. The result showed that corrosion rate monitoring using an AC impedance method is suitable under the given exposure conditions even during the drying period when the metal is covered with the wetted mortar.

건습환경중 순 Mg박막의 EIS부식 모니터링 특성 관찰 (Properties Investigation of Corrosion Monitoring for Pure Mg Thin Films under Wet-Dry Cyclic Conditions by Using Electrochemical Impedance Spectroscopy Method)

  • 배일용;이경희;김기준;문경만;이명훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.192-193
    • /
    • 2005
  • Magnesium thin films were prepared on cold-rolled steel substrates by RF(Radio Frequency) magnetron sputtering technique.$^{1)}$ The crystal orientation and monitoring of the deposited films were investigated by using XRD(X-ray Diffraction) and EIS(Electrochemical Impedance Spectroscopy), respectively. The corrosion rates of Mg thin films deposited with different argon gas pressure and substrate bias voltage were monitored by AC impedance method under a cyclic wet-dry condition, which was conducted by exposure to alternate conditions of 1h immersion in 3%NaCl solution and 5h drying at 60% RH and 25$^{\circ}C$. The result of corrosion rate of Mg thin films deposited at various Ar gas pressures and substrate bias voltage under wet-dry cyclic exposure in chloride-containing solutions was showed the following conclusions. At the region I during the onset of the wet cycle, corrosion rate showed relatively low value. The increase in the Corrosion rate of region II is due to the increase in the chloride concentration. Corrosion rate of region III during the onset of the cycle zero and salt crystals remain on the metal surface.$^{2)}$

  • PDF

전기화학적 및 해수 건습반복 방법에 의한 콘크리트 내의 임계 염화물량 평가 (Estimation of Chloride Corrosion Threshold Value in Concrete by Using Electrochemical and Cyclic Wet and Dry Seawater Method)

  • 배수호;이광명;정영수;김지상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.245-248
    • /
    • 2005
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mixture proportions, cement type and constituents, presence of admixtures, environmental factors, steel reinforcement surface. conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and cyclic wet and dry seawater method, respectively and during the test, corrosion monitoring by half cell potential method was carried out to estimate the chloride corrosion threshold value when corrosion for reinforcing steel in concrete was perceived. For this purpose, lollypop and right hexahedron test specimens were made for 31.4$\%$, 41.5$\%$ and 49.7$\%$ of w/c, respectively and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with water-cement ratio and accelerated corrosion test method, respectively and the chloride corrosion threshold value was found to range from 0.91 to 1.43 kg/$m^{3}$.

  • PDF

콘크리트블록으로 건식조립된 벽체의 수평반복하중에 대한 구조거동 연구 (A Study on the Structure Behavior of Dry-assembled Wall with Concrete Blocks subjected to Cyclic Lateral Load)

  • 이중원
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.440-447
    • /
    • 2020
  • 조적구조는 소규모 건축물에서는 내력벽으로 사용되나 일반적으로 비내력벽으로 간주되어 건축물 골조구조의 내부공간을 구분하는 칸막이벽으로 활용되어진다. 또한 조적공사에서 블록이나 벽돌간의 접착제로 모르타르를 사용하는 습식공법은 양생시간이 필요하여 기후조건에 영향을 받으며, 특히 지진과 같은 횡력에 대해 모르타르의 균열로 벽체의 전도붕괴 등이 발생할 수 있어 매우 취약한 구조이다. 본 연구에서는 이러한 조적구조의 약축방향 전단강성을 보완하고 습식공법의 단점을 개선하는 건식 콘크리트블록 공법을 제안하고 그 구조거동을 규명하고자 한다. 이에 본 연구에서는 콘크리트블록의 재료물성을 살펴보고 수평반복하중에 대한 구조거동실험을 통해 제안된 건식조립 콘크리트블록 벽체의 내진성능을 검증하고자 한다. 본 연구결과에 의하면 첫째로, 콘크리트블록은 KS규준에 C종 블록의 재료성능 이상을 확보하고 있어 습식공법을 대신하는 건식공법에 적용할 수 있을 것이다. 둘째로, 수평반복하중에 대한 벽체의 구조성능은 벽체의 수평길이가 길어짐에 따라 사용된 표준형블록의 증가로 다수의 대각선방향 균열대를 형성하면서 조립블록벽체의 내력이 커짐을 알 수 있다. 끝으로 제안된 건식조립 콘크리트블록 벽체구조는 높이와 길이에 의한 벽체의 형상비가 수평 하중을 받는 구조거동에 주요 영향변수로 판단되어 이를 고려한 내진성능평가가 필요하다.

실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가 (Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test)

  • 박종원;이종구;이경황;김진홍;정문경;이주형
    • Corrosion Science and Technology
    • /
    • 제8권6호
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.

Estimation of Critical Chloride Threshold Value in Concrete by the Accelerated Corrosion Test

  • ;배수호;박재임;이광명;김지상;정상화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.201-204
    • /
    • 2006
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mix proportions, cement type and constituents, presence of admixtures, environmental factors, reinforcement surface conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and cyclic wet and dry seawater method, respectively and during the test, corrosion monitoring by half-cell potential method was carried out to detect the time to initiation of corrosion for individual test specimen. For this purpose, lollypop and right hexahedron test specimens were made for 31%, 42%, and 50% of W/C, respectively, and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with the water-cement ratio and accelerated corrosion test method, respectively and the critical chloride threshold values were found to range from 0.91 to $1.47kg/m^3$.

  • PDF

특수모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가 (Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections with Special Moment Frame Details)

  • 김선훈;이득행;김용겸;이상원;여운용;박정은
    • 한국지진공학회논문집
    • /
    • 제27권5호
    • /
    • pp.203-211
    • /
    • 2023
  • For fast-built and safe precast concrete (PC) construction, the dry mechanical splicing method is a critical technique that enables a self-sustaining system (SSS) during construction with no temporary support and minimizes onsite jobs. However, due to limited experimental evidence, traditional wet splicing methods are still dominantly adopted in the domestic precast industry. For PC beam-column connections, the current design code requires achieving emulative connection performances and corresponding structural integrity to be comparable with typical reinforced concrete (RC) systems with monolithic connections. To this end, this study conducted the standard material tests on mechanical splices to check their satisfactory performance as the Type 2 mechanical splice specified in the ACI 318 code. Two PC beam-column connection specimens with dry mechanical splices and an RC control specimen as the special moment frame were subsequently fabricated and tested under lateral reversed cyclic loadings. Test results showed that the seismic performances of all the PC specimens were fully comparable to the RC specimen in terms of strength, stiffness, energy dissipation, drift capacity, and failure mode, and their hysteresis responses showed a mitigated pinching effect compared to the control RC specimen. The seismic performances of the PC and RC specimens were evaluated quantitatively based on the ACI 374 report, and it appeared that all the test specimens fully satisfied the seismic performance criteria as a code-compliant special moment frame system.

부식촉진에 의한 해양.항만 철근 콘크리트 구조물의 철근 방식에 관한 실험적 연구 (Rapid Corrosion Test on Marine Reinforcing Steel)

  • 정근성;문홍식;송호진;이상국;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.537-542
    • /
    • 2001
  • Recently long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. It needs to maintain the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steels in concrete structure is the most important cause for the durability of concrete structure which can be controlled by systematic preparatory corrosion protection works for economic and safe infrastructures. Various corrosion protection systems have been used for the corrosion protection of reinforcement steels from detrimental chemical components such as chloride, sulphate and etc. Since chloride can be penetrated into concrete in a variety way, an effective method has to be adopted by taking into full economical aspects and technical data of each protection system. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steel in laboratory concrete specimens which are exposed to cyclic wet and dry saltwater, and then to develop pertinent corrosion protection system, such as corrosion inhibitors and cathodic protection for reinforced concrete bridges exposed to chloride environment. Resistance of various corrosion inhibitors and impressed current system have been experimentally evaluated under severe environmental conditions, and thus effective corrosion protection systems could have been Practically developed for future concrete construction.

  • PDF

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.