• Title/Summary/Keyword: Cyclic water stress

Search Result 66, Processing Time 0.019 seconds

The Effect of Displacement Rate on Shear Characteristics of Geotextile-involved Ceosynthetic Interfaces (지오텍스타일이 포함된 토목섬유 경계면의 전단특성에 대한 변위속도 효과)

  • 김진만
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.173-180
    • /
    • 2003
  • In spite of its potential importance in the assessment of geosynthetic-related dynamic problems, no serious attempt has yet been made to investigate a probable dependence of dynamic friction resistance of the geosynthetic interface on shear displacement rate. Hence, an experimental study of geosynthetics was carried out on a shaking table, and the relationship between dynamic friction resistance and shear displacement rate of geosynthetic interfaces was investigated. A cyclic, displacement rate-controlled experimental setup was used. The subsequent multiple rate tests showed that interfaces that involve geotextiles have such unique shearing characteristics that shear strengths tend to increase with displacement rate. In contrast, once submerged with water, the shear strength appears to be no longer dependent on the displacement rate, partly due to lubrication effect of water trapped inside the interface. The results of the experimental study can be used in the seismic safety assessment of a landfill cover and slope where the geosynthetic materials are exposed to a relatively low normal stress.

Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads (파압에 의한 해안구조물-해저지반의 침하거동에 대한 수치해석)

  • Kang, Gi-Chun;Yun, Seong-Kyu;Kim, Tae-Hyung;Kim, Dosam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Seabed settlement underneath a coastal structure may occur due to wave loading generated by storm surge. If the foundation seabed consists of sandy soil, the possibility of the seabed settlement may be more susceptible because of generation of residual excess pore-water pressure and cyclic mobility. However, most coastal structures, such as breakwater, quay wall, etc., are designed by considering wave load assumed to be static condition as an uniform load and the wave load only acts on the structure. In real conditions, however, the wave load is dynamically applied to seabed as well as the coastal structure. In this study, therefore, a real-time wave load is considered and which is assumed acting on both the structure and seabed. Based on a numerical analysis, it was found that there exists a significant effect of wave load on the structure and seabed. The deformation behavior of the seabed according to time was simulated, and other related factors such as the variation of effective stress and the change of effective stress path in the seabed were clearly observed.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.

Density, Bonding Strength, Bending strength and Decay Resistance of Radiata Pine Laminated Veneer Lumber (라디에타소나무 단판적층재의 밀도·접착·강도성능 및 내부후성)

  • Suh, Jin-Suk;Lee, Dong-Heub;Hwang, Won-Joung;Oh, Hyung-Min;Park, Young-Ran;Kang, Sung-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.344-350
    • /
    • 2011
  • In this study, LVLs of radiata pine were fabricated with non-preservative treated veneers, CuAz treated veneers, and ACQ treated veneers, using aqueous vinyl urethane adhesive and phenol modified resorcinol resin adhesive. Then density gradient, bonding strength, bending properties and decay resistance of LVLs were evaluated. As results, the cone-shaped and higher density gradient pattern was found in layer close to glueline. After cyclic water boiled test, the LVL bonded with aqueous vinyl urethane resin adhesive was delaminated in all layers or partly delaminated including check, chasm in glueline layer. In the case of LVL bonded with phenol modified resorcinol resin adhesive, despite slight cupping due to great glueline stress and vertical check between glueline layers, it was observed that the bonding strength to delamination was higher, owing to most absence of delamination through overall glueline. On the other hand, in the decay test, mass loss by brown rot fungi was greater than white rot fungi in LVL bonded with aqueous vinyl urethane resin adhesive. However, in LVL bonded with phenol modified resorcinol resin adhesive, the mass loss by brown rot fungi was slight and non-preservative treated LVL was low. The mass loss of preservative-treated LVL was 0 (zero), showing the high decay resistance effect.

Evaluation of Effect of Low Opening Operation on Increasing Wear of Bearing Bushings of Guide Vanes used in Hydropower Plants (수력발전소 가이드 베인 저개도율 운전에 따른 가이드 베인 베어링 부슁의 마모 가속효과 평가)

  • Kim, Jong-Sung;Kim, Se-Na
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1267-1274
    • /
    • 2012
  • A guide vane plays a key role in controlling the flow rate of water supplied to the turbine of a hydropower plant. It has been reported that guide vane bearing bushings are subjected to considerable wear, which requires them to be maintained. An ancillary service such as frequency control and black start causes cyclic low opening operation of the guide vanes. It is empirically well known that such operation increases the wear rate of the guide vane bearing bushing. In this study, the effect of low opening operation on the increasing wear of the guide vane bearing bushing is quantitatively assessed via finite element flow analysis, finite element stress analysis, and relative wear evaluation. As a result of the assessment, it is identified that the pressure applied on the guide vane surface increases and the contact length between the outer surface of the guide vane stem and the inner surface of the bearing bushing decreases with a decrease in the opening of the guide vane. In addition, low opening of the guide vanes results in an increase in the relative wear owing to the generation of high contact pressure on the bearing bushing surfaces.

Experimental Studies on the Compressive Strength of the Frozen Soils (동결토의 압축강도에 관한 실험적 연구)

  • 유능환;최중돈;유영선;조영택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.55-66
    • /
    • 1993
  • Upon freezing a soil swells due to phase change and its compression stress increase a lot. As the soil undergo thawing, however, it becomes a soft soil layer because the 'soil changes from a solid state to a plastic state. These changes are largely dependent on freezing temperature and repeated freezing-thawing cycle as well as the density of the soil and applied loading condition. This study was initiated to describe the effect of the freezing temperature and repeated freezing-thawing cycle on the unconfined compressive strength. Soil samples were collected at about 20 sites where soil structures were installed in Kangwon provincial area and necessary laboratory tests were conducted. The results could be used to help manage effectively the field structures and can be used as a basic data for designing and constructing new projects in the future. The results were as follows ; 1. Unconfined compressive strength decreased as the number of freezing and thawing cycle went up. But the strength increased as compression speed, water content and temperature decreased. The largest effect on the strength was observed at the first freezing and thawing cycle. 2. Compression strain went up with the increase of deformation speed, and was largely influenced by the number of the freezing-thawing cycle. 3. Secant modulus was responded sensitivefy to the material of the loading plates, increased with decrease of temperature down to - -10$^{\circ}$C, but was nearly constant below the temperature. Thixotropic ratio characteristic became large as compression strain got smaller and was significantly larger in the controlled soil than in the soil treated with freezing and thawing processes 4. Vertical compression strength of ice crystal(development direction) was 3 to 4 times larger than that of perpendicular to the crystal. The vertical compression strength was agreed well with Clausius-Clapeyrons equation when temperature were between 0 to 5C$^{\circ}$, but the strength below - 5$^{\circ}$C were different from the equation and showed a strong dependency on temperature and deformation speed. When the skew was less then 20 degrees, the vertical compression strength was gradually decreased but when the skew was higher than that, the strength became nearly constant. Almost all samples showed ductile failure. As considered above, strength reduction of the soil due to cyclic freezing-thawing prosses must be considered when trenching and cutting the soil to construct soil structures if the soil is likely subject to the processes. Especially, if a soil no freezing-thawing history, cares for the strength reduction must be given before any design or construction works begin. It is suggested that special design and construction techniques for the strength reduction be developed.

  • PDF