• Title/Summary/Keyword: Cyclic variation

Search Result 238, Processing Time 0.025 seconds

Microstructure and Thermal Shock Properties of SiC Materials (SiC 재료의 미세조직 및 열충격 특성)

  • Lee, Sang-Pill;Cho, Kyung-Seo;Lee, Hyun-Uk;Son, In-Soo;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2011
  • The thermal shock properties of SiC materials were investigated for high temperature applications. In particular, the effect of thermal shock temperature on the flexural strength of SiC materials was evaluated, in conjunction with a detailed analysis of their microstructures. The efficiency of a nondestructive technique using ultrasonic waves was also examined for the characterization of SiC materials suffering from a cyclic thermal shock history. SiC materials were fabricated by a liquid phase sintering process (LPS) associated with hot pressing, using a commercial submicron SiC powder. In the materials, a complex mixture of $Al_2O_3$ and $Y_2O_3$ powders was used as a sintering additive for the densification of the microstructure. Both the microstructure and mechanical properties of the sintered SiC materials were investigated using SEM, XRD, and a three point bending test. The SiC materials had a high density of about 3.12 Mg/m3 and an excellent flexural strength of about 700 MPa, accompanying the creation of a secondary phase in the microstructure. The SiC materials exhibited a rapid propagation of cracks with an increase in the thermal shock temperature. The flexural strength of the SiC materials was greatly decreased at thermal shock temperatures higher than $700^{\circ}C$, due to the creation of microcracks and their propagation. In addition, the SiC materials had a clear tendency for a variation in the attenuation coefficient in ultrasonic waves with an increase in thermal shock cycles.

Observed Pattern of Diel Variation in Specific Gravity of Pacific Mackerel Eggs and Larvae

  • Lee, Hwa Hyun;Kang, Sukyung;Jung, Kyung-Mi;Jung, Sukgeun;Sohn, Dongwha;Kim, Suam
    • Ocean and Polar Research
    • /
    • v.39 no.4
    • /
    • pp.257-267
    • /
    • 2017
  • Although Pacific mackerel (Scomber japonicus) is an important commercial species in Korea, its recruitment mechanism remains largely unknown. Diel vertical positioning of larvae in the water column, which is affected by their specific gravity and the surrounding water density, may help to provide an understanding on recruitment success through predator avoidance and prey availability. The specific gravity measurement on Pacific mackerel eggs and larvae would seem to be essential information necessary to learn about the transport process from spawning to nursery grounds, and consequently the recruitment success. Eggs were artificially fertilized, and larvae were fed with rotifer when their mouths opened 3-4 days after hatching. We conducted the experiment using a density gradient water column to measure the ontogenetic changes in specific gravity from fertilization to 10 days after hatching. Egg specific gravity was stable during most of the embryonic period, but a sudden increase to $1.0249g\;cm^{-3}$ happened just before hatching. However, the specific gravity of newly hatched larvae was much lighter ($1.0195g\;cm^{-3}$), and specific gravity tended to increase continuously after hatching. Comparison of specific gravity with seawater density reveals that eggs and newly hatched larvae can float in the surface layer of the ocean. For the later period of the experiment, the specific gravity showed a cyclic diel pattern: the highest in the evening while the lowest at dawn. The fullness of larval stomach may be responsible for the observed differences in specific gravity, because stomach fullness was lower (40-60%) at midnight, and higher (80-85%) in evening. The diel pattern of specific gravity might provide clues regarding how larvae match the diel vertical migration of prey organisms.

Preparation and Crystal Structures of Silver(I), Mercury(II), and Lead(II) Complexes of Oxathia-Tribenzo-Macrocycles

  • Siewe, Arlette Deukam;Ju, Huiyeong;Lee, Shim Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.725-730
    • /
    • 2013
  • An investigation of the coordination behavior of sulfur-containing mixed-donor tribenzo-macrocycles $L^1-L^3$ ($L^1$: 20-membered $O_3S_2$, $L^2$: 20-membered $O_2S_3$, and $L^3$: 23-membered $O_4S_2$) with $d^{10}$-metal ($Ag^+$, $Hg^{2+}$, and $Pb^{2+}$) salts is reported. The X-ray structures of five complexes (1-5) with different structural types and stoichiometries, including mono- to dinuclear species have been determined. Reactions of $L^2$ and $L^3$ with the silver(I) salts ($PF_6{^-}$ and $SCN^-$) afforded two dinuclear 2:2 (metal-to-ligand) complexes with different arrangements: a sandwich-type cyclic dinuclear complex $[Ag_2(L^2)_2](PF_6)_2{\cdot}3CH_2Cl_2$ (1) and a linear dinuclear complex $[Ag_2(L^3)_2(SCN)_2]$ (2), in which two monosilver(I) complex units are linked by an Ag-Ag contact. Reactions of $L^1$ and $L^2$ with mercury(II) salts ($SCN^-$ and $Cl^-$) gave a mononuclear 1:1 complexes $[Hg(L^1)(SCN)_2]$ (3) and $[Hg(L^2)Cl_2]$ (4) with anion coordination in both cases. $L^2$ reacts with lead(II) perchlorate to yield a mononuclear sandwich-type complex $[Pb(L^2)_2(ClO_4)_2]$ (5), giving an overall metal coordination geometry of eight with a square antiprism arrangement. From these results, the effects of the donor variation and the anioncoordination ability on the resulting topologies of the soft metal complexes are discussed.

Relationship between Winter Water Temperature in the Eastern Part of the Yellow Sea and Siberian High Pressure and Arctic Oscillation

  • Jung, Hae Kun;Lee, Chung Il
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1425-1433
    • /
    • 2012
  • Water temperature in the eastern part of the Yellow Sea (EYS) during winter (JFM) and summer (JJA) from 1964 to 2009 and Siberian High Pressure Index (SHI) and Arctic Oscillation index (AOI) during winter (JFM) from 1950 to 2011 were used to analyze long-term variation in oceanic and atmospheric conditions and relationship between winter and summer bottom water temperature. Winter water temperature at 0, 30 and 50 m had fluctuated highly till the late of 1980s, but after this it was relatively stable. The long-term trends in winter water temperature at both depths were separated with cold regime and warm regime on the basis of the late 1980s. Winter water temperature at 0m and 50m during warm regime increased about $0.9^{\circ}C$ and $1.1^{\circ}C$ respectively compared to that during cold regime. Fluctuation pattern in winter water temperature matched well with SHI and AOI The SHI had negative correlation with water temperature at 0 m (r=-0.51) and 50 m (r=-0.58). On the other hand, the AO had positive correlation with Winter water temperature at 0 m (r=0.34) and 50 m (r=0.45). Cyclic fluctuation pattern of winter water temperature had a relation with SHI and AO, in particular two to six-year periodicity were dominant from the early of the 1970s to the early of the 1980s. Before the late of 1980s, change pattern in winter water temperature at 0 and 50 m was similar with that in the bottom water temperature during summer, but after this, relationship between two variables was low.

Analysis of Unsteady Blade Forces in a Vertical-axis Small Wind Turbine (수직형 소형풍력터빈의 비정상 익력 평가)

  • LEE, SANG-MOON;KIM, CHUL-KYU;JEON, SEOK-YUN;ALI, SAJID;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • In the present study, unsteady flow analysis has been conducted to investigate the blade forces and wake flow around a hybrid street-lamp having a vertical-axis small wind turbine and a photovoltaic panel. Uniform velocities of 3, 5 and 7 m/s are applied as inlet boundary condition. Relatively large vortex shedding is formed at the wake region of the photovoltaic panel, which affects the increase of blade torque and wake flow downstream of the wind turbine. It is found that blade force has a good relation to the variation of the angle of attack with the rotation of turbine blades. Variations in the torque on the turbine blade over time create a cyclic fluctuation, which can be a source of turbine vibration and noise. Unsteady fluctuation of blade forces is also analyzed to understand the nature of the vibration of a small wind turbine over time. The detailed flow field inside the turbine blades is analyzed and discussed.

A Study on the Effect of the Cyclic Hardening by Fatigue in Structural Mild Steel (구조용(構造用) 연강재(軟鋼材)에 대한 피로경화(疲勞硬化)의 영향(影響)에 관한 연구(硏究))

  • Chang, Dong Il;Yong, Hwan Sun;Hwang, Yoon Koog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.23-32
    • /
    • 1982
  • In order to obtain the necessary data for the safety maintenance, repair, and reinforcement of steel structures, experiment was carried out to examine the mechanical capacity and toughness variation for steel with service history and without. In this paper, hardening and embrittlement by fatigue accumulation, and the decrease of toughness was examined and weld that was commonly used as the connection method of steel structure was also examined. It was found that hardening and embrittlement have more effect on the decrease of toughness than the increase of strength. Such a tendency was also similary state in case of weld. And it was found that, in the weld of steel with service history and without, embrittlement was observed at normal temperature.

  • PDF

Effect of creep-fatigue interaction on high temperature low cycle fatigue strength and fracture behavior of STS 316 stainless steels (STS 316鋼 의 高溫低사이클 疲勞强度 와 破壞擧動 에 미치는 크리이프 - 疲勞 相互作용 의 影響)

  • 오세욱;이규용;김중완;문무경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.140-149
    • /
    • 1985
  • Fully reversed push-pull low cycle fatigue tests under strain control of trapezoid cyclic mode have been conducted in air at temperature of 550.deg. C and with frequency of 0.5 cpm on the domestic stainless steel STS 316 after solution treatment for 1 hour at 1100.deg. C. As an experimental equipment for high temperature fatigue tests, an electric servo-hydraulic fatigue machine(Instron model 1350) was used. This paper presents the effects of creep hold time and plastic strain range on push-pull high temperature low cycle fatigue life and fracture behavior. The fracture surfaces were observed by means of the scanning electron microscope. The results are as follows. (1) The fatigue life decreases with increase of the plastic strain range equal hold time and also decreases as the hold time is getting longer. (2) The frequency modified damage function can predict fatigue life by incorporating a variation of Coffin's frequency modified approach into damage function. (3) The ratios of creep damage and fatigue damage can be calculated by using he linear accumulation damage concept and the ratio of creep damage increases as the hold time is getting longer. (4) At the creep hold time of 5 minutes and the strain range of 2.0%, the fracture mode was intergranular fracture and striations were hardly observed. In this case, the intergranular cracking was originated in void type('.gamma.' type) cracking.

Stress Analysis and Fatigue limit Evaluation of Plate with Notch by Lock-In Thermography (Lock-In Thermography를 이용한 노치시험편의 응력해석 및 피로한계치 평가)

  • Kim, Won-Tae;Kang, Ki-Soo;Choi, Man-Yong;Park, Jeong-Hak;Huh, Yong-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.315-320
    • /
    • 2006
  • This paper describes stress analysis and fatigue limit evaluation of plate with V-notch and hole-notch by lock-in infrared thermography. Temperature variation of a specimen under cyclic loading is negatively proportional to the sum of principle stress change and the surface temperature measured by infrared camera is calculated to the stress of notch specimens, based on thermoelastic equation. And also, fatigue limitation can be evaluated by the change of intrinsic energy dissipation. Fatigue limitation of two notch specimens is evaluated as 164 MPa and 185 MPa, respectively and the stress measured by Lock-in infrared Thermography show good agreement within 10% error.

Thymic Stromal Lymphopoietin (TSLP) Gene Polymorphisms are not Associated with Rheumatoid Arthritis in a Korean Population (TSLP 유전자의 다형성은 한국인 류마티스관절염 발생에 영향을 미치치 않는다)

  • Lee, Sam-Youn;Yu, Ji-In;Chae, Soo-Cheon
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.25-30
    • /
    • 2012
  • Thymic stromal lymphopoietin(TSLP) is a novel IL-7-like hematopoietic cytokine. Human TSLP is produced by epithelial cells, stromal cells, and mast cells. The TSLP gene is highly expressed in synovial fluid specimens derived from rheumatoid arthritis (RA) patients. We previously identified four single nucleotide polymorphisms (SNPs) and one variation site in human TSLP gene. In this study, we analyzed the genotypic and allelic frequencies of the TSLP SNPs between RA patients and healthy controls. We also investigated the relationships between SNP genotypes and the RF levels and anti-synthetic cyclic citrullinated peptide (CCP) levels in RA patients. We then calculated the haplotype frequencies defined by these SNPs for both groups. The genotype and allele frequencies of the TSLP SNPs did not differ significantly between the RA patients and the healthy controls. We also found that TSLP SNPs in the RA patients had no significant association with the levels of RF or anti-CCP. Our results suggest that TSLP SNPs are not associated with susceptibility to RA.

Kinetics and Mechanism of the Anilinolysis of Ethylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4185-4190
    • /
    • 2011
  • The nucleophilic substitution reactions of ethylene phosphorochloridate (1c) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 1c involving a cyclic five-membered ring is four thousand times faster than its acyclic counterpart (1a: diethyl chlorophosphate) because of great positive value of the entropy of activation of 1c (${\Delta}S^{\neq}=+30\;cal\;mol^{-1}K^{-1}$ compared to negative value of 1a (${\Delta}S^{\neq}=-45\;cal\;mol^{-1}K^{-1}$) over considerably unfavorable enthalpy of activation of 1c (${\Delta}H^{\neq}=27.7\;kcal\;mol^{-1}$) compared to 1a (${\Delta}H^{\neq}=8.3\;kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. The free energy correlations exhibit biphasic concave upwards for substituent X variations in the X-anilines with a break point at X = 3-Me. The deuterium kinetic isotope effects are secondary inverse ($k_H/k_D$ < 1) with the strongly basic anilines and primary normal ($k_H/k_D$ > 1) with the weakly basic anilines and rationalized by the TS variation from a dominant backside attack to a dominant frontside attack, respectively. A concerted $S_N2$ mechanism is proposed and the primary normal deuterium kinetic isotope effects are substantiated by a hydrogen bonded, four-center-type TS.