• Title/Summary/Keyword: Cyclic variation

Search Result 238, Processing Time 0.021 seconds

Measurement and analysis of the cyclic combustion variability in as SI engine (전기점화기관에서 연소의 사이클 변화 측정 및 해석)

  • 이종화;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.90-101
    • /
    • 1992
  • An experimental study was carried out to investigate the characteristics of cyclic variability of combustion in a single cylinder spark ignition engine. Cylinder pressure of 240 consecutive cycles were measured for various engine operating conditions. From these data, a thermody-n amic analysis was performed for the typical cases in order to identify the cause and effect re -lation of the cyclic variation. In determining the number of cycles required for estimating the coefficient of variation of IMEP and so on, the oprating conditions must be cosidered to fit the objective of the analysis. It is thought that the variation in early flame stage is amplified through the flame propagation and results in the phase change between pressure and volume, which can be the major reason of cyclic variation of IMEP in case of lean operation.

  • PDF

Analysis of the Cyclic Variability in SI Engine at Idling (공회전에서 스파크 점화기관 연소의 사이클 변동 해석)

  • Han, Sung-Bin;Chang, Yong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.709-717
    • /
    • 2000
  • Cyclic variability has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. The cyclic combustion variations can be characterized by the pressure parameters, combustion parameters, and flame front parameters. The coefficient of variation in indicated mean effective pressure ($COV_{IMEP}$) defines the cyclic variability in indicated work per cycle, and it has been found that vehicle driveability problems usually result when $COV_{IMEP}$ exceeds about 10%. For analysis of the cyclic variability in SI engines at idling, the results show that cyclic variability by the $COV_{IMEP}$ or the coefficient of variation in maximum pressure can be explained and may be consequently reduced by the help of the optimum spark timings.

Investigation of Cyclic Variations of IMEP Under Idling Operation in Spark Ignition Engines

  • Han, Sung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.81-87
    • /
    • 2001
  • Cyclic variability limits the range of operating conditions of spark ignition engines, especially under lean and highly diluted operation conditions. The cyclic combustion variations can be characterized by pressure parameters, combustion related parameters, and flame-front related parameters. The coefficient of variation (COV) in indicated mean effective pressure (IMEP) defines the cyclic variability in indicated work per cycle.

  • PDF

압축 착화 기관의 연소 변동 특성에 관한 연구

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.69-76
    • /
    • 1987
  • This paper deals with the theoretical prediction and cyclic variation of combustion characteristics in a four stroke, single0cylinder, diesel engine. Theoretical calculations employed a simple empirical model of analysis of energy equation for the thermodynamic system of engine cylinder. The cyclic variation of combustion characteristics is investigated, in term of frequency distribution and standard deviation of peak characteristics, as obtained by combustion analyzer system. The results of theoretical prediction are shown to be in close agreement with the experimental data. The effect of fuel injection timing, engine speed, cooling water temperature, and the compression ratio on the cyclic variations of combustion characteristics were discussed.

  • PDF

Modeling and its Experimental Validation on Cycle Variability of Combustion at Idle Operation (공회전시 연소의 사이클 변화 모델링 및 확인실험)

  • 조한승;황승환;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.221-229
    • /
    • 1996
  • The engine speed fluctuation at idle operation mainly comes from cyclic variation of combustion in SI engine. In the present study, engineering model that is representing the cyclic variation of combustion was proposed for the sub-model of the engine cycle simulation. From the observed behaviors of the mass burn rates, probability density functions for the parameters of Wiebe function were defined. The mass burn rate of each cycle is obtained by Monte Cralo perturbation method with the probability function. The simulation results shows that trends of cylinder pressure variation and imep distribution follow up with those of experimental results at idle condition.

  • PDF

Solar Cyclic Modulation of Diurnal Variation in Cosmic Ray Intensity

  • Park, Eun Ho;Jung, Jongil;Oh, Suyeon;Evenson, Paul
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.219-225
    • /
    • 2018
  • Cosmic rays are ions that move at relativistic speeds. They generate secondary cosmic rays by successive collisions with atmospheric particles, and then, the secondary particles reach the ground. The secondary particles are mainly neutrons and muons, and the neutrons are observed by the ground neutron monitor. This study compared the diurnal variation in cosmic ray intensity obtained via harmonic analysis and that obtained through the pile-up method, which was examined in a previous study. In addition, we analyzed the maximum phase of the diurnal variation using four neutron monitors with a cutoff rigidity below approximately 6 GV, located at similar longitudes to the Oulu and Rome neutron monitors. Expanding the data of solar cycles 20-24, we examined the time of the maximum cosmic ray intensity, that is, the maximum phase regarding the solar cyclic modulation. During solar cycles 20-24, the maximum phase derived by harmonic analysis showed no significant difference with that derived by the pile-up method. Thus, the pile-up method, a relatively straightforward process to analyze diurnal variation, could replace the complex harmonic analysis. In addition, the maximum phase at six neutron monitors shows the 22-year cyclic variation very clearly. The maximum phase tends to appear earlier and increase the width of the variation in solar cycles as the cutoff rigidity increases.

Geometry variation for as-grown carbon coils under the minimized sulfur additive condition

  • Lee, Seok-Hee;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.213-217
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases under thermal chemical vapor deposition system. By the incorporation of $SF_6$ additive in cyclic modulation manner, the dominant formation of the nanosized carbon coils could be achieved with maintaining the minimized sulfur additive amount. The geometry variation of the as-grown carbon coils, such as linear type, microsized coil type, wavelike nanosized coil type, and nanosized coil type, were investigated according to the different cyclic modulation manner of $SF_6$ flow. $SF_6$ gas incorporation develops the coil-type geometry. Furthermore, the higher flow rate of $SF_6$ gas increased the amount of the nanosized carbon coils. The slightly increased etching ability by $SF_6$ addition seems to be the cause for these results.

Experimental Study on the Cycle-to-Cycle Combustion Variations in a Spark Ignition Engine

  • Han, Sung Bin;Hwang, Sung Il
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.197-204
    • /
    • 2013
  • A cyclic variability has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under idling conditions. The coefficient of variation (COV) in indicated mean effective pressure (IMEP) defines the cyclic variability in indicated work per cycle, and it has been found that vehicle drivability problems usually result. For analysis of the cyclic variations in spark ignition engines at idling, the results show that cyclic variability by the COV, COV of IMEP, the lowest normalized value (LNV), and burn angles can help to design the spark ignition engine.

An approach for modelling fracture of shape memory alloy parts

  • Evard, Margarita E.;Volkov, Alexander E.;Bobeleva, Olga V.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.357-363
    • /
    • 2006
  • Equations describing deformation defects, damage accumulation, and fracture condition have been suggested. Analytical and numerical solutions have been obtained for defects produced by a shear in a fixed direction. Under cyclic loading the number of cycles to failure well fits the empirical Koffin-Manson law. The developed model is expanded to the case of the micro-plastic deformation, which accompanies martensite accommodation in shape memory alloys. Damage of a shape memory specimen has been calculated for two regimes of loading: a constant stress and cyclic variation of temperature across the interval of martensitic transformations, and at a constant temperature corresponding to the pseudoelastic state and cyclic variation of stress. The obtained results are in a good qualitative agreement with available experimental data.

Modeling of nonlinear response of R/C shear deficient t-beam subjected to cyclic loading

  • Hawileh, R.A.;Abdalla, J.A.;Tanarslan, M.H.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.419-434
    • /
    • 2012
  • This paper presents a finite element (FE) model for predicting the nonlinear response and behavior of a reinforced concrete T-beam deficient in shear under cyclic loading. Cracking loads, failure loads, response hysteresis envelopes and crack patterns were used as bench mark for comparison between experimental and FE results. A parametric study was carried out to predict the optimum combination of the open and close crack shear transfer coefficients (${\beta}_t$ and ${\beta}_c$) of the constitutive material model for concrete. It is concluded that when both shear transfer coefficients are equal to 0.2 the FE results gave the best correlation with the experimental results. The results were also verified on a rectangular shear deficient beam (R-beam) tested under cyclic loading and it is concluded that the variation of section geometry has no effect on the optimum choice of the values of shear transfer coefficients of 0.2. In addition, a parametric study based on the variation of concrete compressive strength, was carried out on the T-beam and it is observed that the variation of concrete compressive strength has little effect on the deflection. Further conclusions and observations were also drawn.