• 제목/요약/키워드: Cyclic tests

검색결과 1,020건 처리시간 0.025초

이방 구속 조건에서 실지진 하중을 이용한 액상화 저항강도 특성 분석 (A Study on the Liquefaction Resistance of Anisotropic Sample under Real Earthquake Loading)

  • 이재진;정상섬;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1188-1191
    • /
    • 2009
  • In this study, cyclic triaxial tests were performed with the samples which were anisotropically consolidated using irregular earthquake loading to consider in-situ condition and seismic wave. The consolidation pressure ratio(K) was changed from 0.5 to 1.0. The Ofunato and Hachinohe wave are applied as irregular earthquake loading and liquefaction resistance strength was estimated from excess pore water pressure(EPWP) ratio. As results of the cyclic triaxial tests, buildup of EPWP ratio increased as K value increased. It shows, that the isotropically consolidated sands is more susceptible to liquefaction than anisotropically consolidated sands under equal conditions such as confining pressure and dynamic loading.

  • PDF

Ductility of open piled wharves under reversed cyclic loads

  • Yokota, Hiroshi;El-Bakry, Hazem M.F.
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.615-632
    • /
    • 2001
  • Ductility of open piled wharves under reversed cyclic loads has been investigated. Experimental testing of five wharf models having a scale of about 1:4 was conducted under the application of horizontal reversed cyclic loading. The experiments were designed to focus on the horizontal ultimate load, ductility and failure mode of the considered wharf models. Nonlinear numerical analyses using the finite element method were also performed on numerical models representing the experimentally tested wharves. The results of the experimental tests showed that open piled wharves possessed favourable ductile behaviour and that their load bearing capacity did not depreciate until a ductility factor of 3 to 4 was reached. The numerical analysis showed that the relative rotation that took place at the joints between the steel piles and the R.C. beam was responsible for a considerable portion of the total horizontal deformation of the wharves. Therefore, it was concluded that introducing the joint stiffness in calculating the deformations of open piled wharves was important to achieve reasonable accuracy.

Behaviour of composite walls under monotonic and cyclic shear loading

  • Hossain, K.M. Anwar;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.69-85
    • /
    • 2004
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. Such walling system can be used as shear elements in steel framed building subjected to lateral load. This paper presents the results of small-scale model tests on composite wall and its components manufactured from very thin sheeting and micro-concrete tested under monotonic and cyclic shear loading conditions. The heavily instrumented small-scale tests provided information on the load-deformation response, strength, stiffness, strain condition, sheet-concrete interaction and failure modes. Analytical models for shear strength and stiffness are derived with some modification factor to take into account the effect of quasi-static cycling loading. The performance of design equations is validated through experimental results.

부분적인 비 부착 철근을 갖는 슬래브-기둥 접합부의 반복 횡하중 실험 (Tests of Slab-Column Connections with Partially Debonded Reinforcement under Cyclic Lateral Loading)

  • 최정욱;송진규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.13-16
    • /
    • 2006
  • This article summarizes tests conducted on two full-scale interior slab-column connections with and without partially debonded reinforcement subjected to cyclic loading. Each test specimen consisted of a 4.2m square slab with a 355mm square column protruding 1.5m above and below the slab. The slab thickness was 152mm. The specimen with partially debonded reinforcement exhibited more lateral drift capacity than did the specimen with fully bonded reinforcement. With partial debonding of the flexural reinforcement, cyclic load appeared to produce less damage to the connection in the vicinity of the slab-column joint region.

  • PDF

접착제 접합과 점용접된 버스 폴딩도어 필러의 굽힘피로강도 평가에 관한 연구 (A Study on Cyclic Bending Load of Bus Folding Door Pillar including Adhesive Bonding and Spot Welding)

  • 윤호철
    • Journal of Welding and Joining
    • /
    • 제24권3호
    • /
    • pp.55-59
    • /
    • 2006
  • This paper is concerned with a study on cyclic bending load of bus folding door pillar including adhesive bonding and spot welding. Three specimen types were used such as spot welding, I-type adhesive bonding and M-type adhesive bonding in this study. The tensile-shear tests were carried out to evaluate the tensile-shear strength of these three specimen types. Also four-point bending tests were carried out to evaluate the static and dynamic bending load. From the results, using adhesive bonding has a better effect on the static and dynamic bending load than using spot welding. Therefore, manufacturing better structural products can be expected by applying hybrid welding using adhesive and spot welding to those.

지진하중 주파수에 따른 액상화 거동 특성 (Characteristics of Liquefaction Behavior with Earthquake Load Frequency)

  • 윤원섭
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.739-748
    • /
    • 2019
  • In this study, cyclic triaxial tests were performed for liquefaction characteristics according to earthquake loading frequency. The test period was tested for 0.1Hz, 0.2Hz, 0.5Hz 1.0Hz, 1.5Hz. It was analyzed that the number of earthquake loading increases as the test result frequendy increases. Therefore, additional study of the liquefaction evaluation method was needed considering the local characteristics of the high frequency earthquakes in Korea and the cyclic triaxial test frequency(0.1Hz), which is mainly used in the design.

Tailings fluidization under cyclic triaxial loading - a laboratory study

  • Do, Tan Manh;Laue, Jan;Mattson, Hans;Jia, Qi
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.497-508
    • /
    • 2022
  • Tailings fluidization (i.e., tailings behave as being fluidized) under cyclic loading is one concern during the construction of tailings dams, especially in the shallow tailings layers. The primary goal of this study is to evaluate the responses of tailings under cyclic loadings and the tailings potential for fluidization. A series of cyclic triaxial undrained and drained tests were performed on medium and dense tailings samples under various cyclic stress ratios (CSR). The results indicated that axial strain and excess pore water pressure accumulated over time due to cyclic loading. However, the accumulations were dependent on CSR values, densities, and drainage conditions. The fluidization potential analysis in this study was then evaluated based on the obtained cyclic axial strain and excess pore water pressure. As a result, tailings samples were stable (unfluidized) under small CSR values, and the critical CSR values, where the tailings fluidized, varied depending on the density of tailings samples. Tailings fluidization is triggered as cyclic stress ratios reach critical values. In this study, the critical CSR values were found to be 0.15 and 0.40 for medium and dense samples, respectively.

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.

송전용 고분자 애자의 정적 및 동적인 상태에서 장기 기계적 특성 연구 (A Study on the Long-term Mechanical Properties Under Static and Cyclic State of Composite Insulators for Transmission Lines)

  • 김수연;김영성;홍진영;박완기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.869-871
    • /
    • 1998
  • The extensive use of composite insulators for transmission lines can ultimately be justified only on long-term qualification tests. The actual load working on the insulator in the field is not static load but cyclic load. So in this paper, we discussed an examination of aging degradation by mechanical performance of composite insulators under static tension load and cyclic tension load. and also described useful approaches for analyzing their long term performance so as to develop reliable composite insulators. The static and cyclic tension load-time test data were examined by Weibull distribution for their capability of presuming long term performance. It was found that cyclic tension loads were more severe than static tension loads. The results also indicate that it may be relevant for an user to select composite insulators on basis of their performance under cyclic tension loads than static tension loads.

  • PDF

단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구 (An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading)

  • 고태영;이승철;김동근;최영태
    • 터널과지하공간
    • /
    • 제21권4호
    • /
    • pp.307-319
    • /
    • 2011
  • 교통, 굴착, 발파 등에 의한 반복하중은 오랜 시간에 걸쳐서 암석의 미세균열 성장을 일으키며, 암석의 강도 등에 영향을 미치기 때문에 반복하중에 의한 균열의 성장, 결합은 장시간 안정성 평가에 중요한 영향을 미친다. 본 연구에서는 두 개의 초기 균열을 가지는 모사 암석 시험편에 단조증가 및 반복하중을 가하여 하중 조건에 따른 균열의 성장과 결합유형을 조사하였다. 단조증가하중, 반복하중 시험 모두에서 서로 유사한 날개균열 시작 위치, 날개균열 각도, 균열 성장 순서, 균열 결합 형태가 관측되었다. 본 연구에서 관찰된 균열 결합은 크게 3종류로 전단에 의한 결합, 1개의 날개 혹은 인장 균열에 의한 결합 그리고 2개의 날개 혹은 인장 균열에 의한 결합으로 요약될 수 있다. 피로균열은 반복하중 시험에서만 발생하였으며 성장 방향은 이차균열과 유사하게 초기균열과 같은 방향 혹은 하중방향과 직교인 수평방향으로 관찰되었다.