• Title/Summary/Keyword: Cyclic properties

Search Result 1,062, Processing Time 0.026 seconds

A Design Problem of a Two-Stage Cyclic Queueing Network (두 단계로 구성된 순환대기네트워크의 설계)

  • Kim Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • In this paper we consider a design problem of a cyclic queueing network with two stages, each with a local buffer of limited capacity. Based on the theory of reversibility and product-form solution, we derive the throughput function of the network as a key performance measure to maximize. Two cases are considered. In case each stage consists of a single server, an optimal allocation policy of a given buffer capacity and work load between stages as well as the optimal number of customers is identified by exploiting the properties of the throughput function. In case each stage consists of multiple servers, the optimal policy developed for the single server case doesn't hold any more and an algorithm is developed to allocate with a small number of computations a given number of servers, buffer capacity as well as total work load and the total number of customers. The differences of the optimal policies between two cases and the implications of the results are also discussed. The results can be applied to support the design of certain manufacturing and computer/communication systems.

The Influence of Cyclic Treatments with H₂O₂ and HF Solutions on the Roughness of Silicon Surface

  • 이혜영;이충훈;전형탁;정동운
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.737-740
    • /
    • 1997
  • The influence of cyclic treatments with H2O2/DIW (1 : 10) and HF/DIW (1 : 100) on the roughness of silicon surface in the wet chemical processing was investigated by atomic force microscopy (AFM). During the step of the SC-1 cleaning, there is a large increase in roughness on the silicon surface which will result in the poor gate oxide breakdown properties. The roughness of the silicon wafer after the SC-1 cleaning step was reduced by cyclic treatments of hydrogen peroxide solution and hydrofluoric acid solution instead of HF-only cleaning. AFM images after each step clearly illustrated that the average roughness of silicon surface after three times treatments with H2O2 and HF solutions was reduced by 10 times compared with that after the SC-1 cleaning step.

Monitoring Management Plan for Changed Region with respect to Revision Periods (변화지역에 대한 갱신주기별 모니터링 운영방안)

  • Han, You Kyung;Yeom, Jun Ho;Kim, Yong Il;Lee, Byoung Kil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.401-410
    • /
    • 2013
  • Due to the increasing need for spatial information, there have been a lot of research related with monitoring and revision of changed regions for the acquisition of the accurate and latest information. In this paper, the optimal monitoring management plan for changed regions with respect to the revision periods was proposed. For this purpose, the representative monitoring methods, which are based on database, professional manpower and crowdsourcing of continuous revision, and aerial imagery, satellite imagery and LiDAR of cyclic revision, were investigated. Then, the properties and application status of monitoring systems in Korea were illustrated according to the methods. Finally, the optimal monitoring management plan for continuous and cyclic revisions was suggested through the comparison of properties and revisionable objects of each method. From the result, it was shown to be appropriate for the optimal monitoring management plan of continuous revision as using Internet-Architectural Information System (e-AIS) database cooperated with professional manpower and crowdsourcing, and cyclic revision as using domestic high-resolution satellite images and LiDAR data processed semi-automatically.

Studies on the properties of electrochromic films and the effect of migration barrier (Electrochromic 막의 특성과 물질이동 방지막의 효과에 대한 연구)

  • 황하룡;백지흠;허증수;이덕동;임정옥;장동식
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • After manufacturing the electrochromic device (structure: ITO glass/$WO_3$/electrolyte/$V_2O_5$/ITO;glass) by using of sol-gel process and evaporation, optical properties and migration effect were investigated. The result shows that electrochromic device with heat treated (at water vapor ambient, $500^{\circ}C$, 1 hour) sol-gel coated $WO_3$ and $V_2O_5$ films had the highest transmittance variance. Electrochromic devices are based on the reversible insertion of guest atoms into structure of the host solid. But after cyclic operation, we find that the tungsten in $WO_3$ film and the indium in ITO film were migrated with each other. For the purpose of blocking migration, tungsten barrier film is inserted between ITO and $WO_3$ film. The result of cyclic voltamogram and the Auger depth profile show that the peak separation of cyclic voltamogram is reduced to below 1/10 and we could effectively block the indium and tungsten migration that is caused by flow of Li ions.

  • PDF

A Method to Adjust Cyclic Signal Length Using Time Invariant Feature Point Extraction and Matching(TIFEM) (시불변 특징점 추출 및 정합을 이용한 주기 신호의 길이 보정 기법)

  • Han, A-Hyang;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.111-122
    • /
    • 2010
  • In this study, a length adjustment algorithm for cyclic signals in manufacturing process using Time Invariant Feature point Extraction and Matching(TIFEM) is proposed. In order to precisely compensate the length of cyclic signals which have irregular length in the middle of signal as well as in the full length more feature points are needed. The extracted feature must involve information about the pattern of signal and should have invariant properties on time and scale. The proposed TIFEM algorithm extracts features having the intrinsic properties of the signal characteristics at first. By using those extracted features, feature vector is constructed for each time point. Among those extracted features, the only effective features are filtered and are chosen such as basis for the length adjustment. And then the partial length adjustment is performed by matching feature points. To verify the performance of the proposed algorithm, the experiments were performed with the experimental data mimicking the three kinds of signals generated from the actual semiconductor process.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Crystal Plasticity Simulation of Ti-6Al-4V Under Fretting Fatigue (프레팅 피로를 받는 Ti-6Al-4V의 결정소성 시뮬레이션)

  • Goh Chung Hyun;Lee Kee Seok;Ko Jun Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.511-517
    • /
    • 2005
  • Fretting fatigue is often the root cause of the nucleation of cracks at attachments of structural components. Since fretting fatigue damage accumulation occurs over relatively small volumes, the subsurface cyclic plastic strain is expected to be rather non-uniformly distributed in polycrystalline materials. The scale of the cyclic plasticity and the damage process zones is often on the order of microstructure dimensions. Fretting damage analyses using cyclic crystal plasticity constitutive models have the potential to account for the influence of size, morphology, and crystallographic orientation of grains on fretting damage evolution. Two-dimensional plane strain simulations of fretting fatigue are performed using the cyclic properties of Ti-6Al-4V. The crystal plasticity simulations are compared to an initially isotropic $J_{2}$ theory with nonlinear kinematic hardening as well as to experiments. The influence of initially isotropic versus textured microstructure in the presence of crystallographic slip is studied.

Behavior of Steel Beam Connections under Cyclic Loading (반복하중을 받는 철골보 접합부의 거동)

  • 이승준;김상배
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.23-32
    • /
    • 1999
  • Behavior of H-beam connections under cyclic loadings is investigated experimentally in this study. The purpose of this study is to study the effect of steel properties and coping shape on the hysteretic behavior of H-beam connections. Five beam-to-column connection specimens were fabricated and tested under cyclic loadings. The load-rotation curves of the beam connections were mainly obtained. Deformation capacity and energy dissipation capacity of the connections are compared each other. The connections fabricated from SS400 showed good deformability and energy dissipation capacity, but those from SM490 showed brittle fracture at the connection. The coping shape at the connections showed a little difference in cyclic behavior.

  • PDF

Antiplatelet effects of scoparone through up-regulation of cAMP and cGMP on U46619-induced human platelets

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.425-431
    • /
    • 2019
  • Platelet activation is essential for hemostatic process on blood vessel damage. However, excessive platelet activation can cause some cardiovascular diseases including atherosclerosis, thrombosis, and myocardial infarction. Scoparone is commonly encountered in the roots of genus Artemisia or Scopolia, and has been studied for its potential pharmacological properties including immunosuppression and vasorelaxation, but antiplatelet effects of scoparone have not been reported yet. We investigated the effect of scoparone on human platelet activation prompted by an analogue of thromboxane A2, U46619. As the results, scoparone dose-dependently increased cyclic adenosine monophosphate (cAMP) levels as well as cyclic guanosine monophosphate (cGMP) levels, both being aggregation-inhibiting molecules. In addition, scoparone strongly phosphorylated inositol 1, 4, 5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphoprotein (VASP), substrates of cAMP dependent kinase and cGMP dependent kinase. Phosphorylation of IP3R by scoparone resulted in inhibition of Ca2+ mobilization in calcium channels in a dense tubular system, and phosphorylation of VASP by scoparone led to an inability of fibrinogen being able to bind to αIIb/β3. Finally, scoparone inhibited thrombin-induced fibrin clotting, thereby reducing thrombus formation. Therefore, we suggest that scoparone has a strong antiplatelet effect and is highly probable to prevent platelet-derived vascular disease.

Study on a seismic slit shear wall with cyclic experiment and macro-model analysis

  • Jiang, Huanjun;Lu, Xilin;Kwan, A.K.H.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.371-390
    • /
    • 2003
  • The concept of the seismic slit shear wall was proposed in the early 1990's. A series of experimental and theoretic studies on the wall with reinforced concrete short connecting beams cast in the slit were carried out. In this paper another type of slit shear wall is studied. It is one with vertical slit purposely cast within the wall, and the rubber belt penetrated by a part of web shear reinforcement as seismic energy-dissipation device is filled in the slit. Firstly, an experiment under cyclic loading was carried out on two shear wall models, one slit and the other solid. The failure mechanism and energy-dissipation capacity are compared between the two different models, which testifies the seismic performance of the slit wall improved significantly. Secondly, for engineering practice purpose, a macroscopic analytical model is developed to predict the nonlinear behavior of the slit shear wall under cyclic loading. The mechanical properties of each constituent elements of this model are based on the actual behavior of the materials. Furthermore, the effects of both the axial force and bending moment on the shear behavior are taken into account with the aid of the modified compression-field theory. The numerical results are verified to be in close agreement with the experimental measurements.