• 제목/요약/키워드: Cyclic loading tests

검색결과 529건 처리시간 0.022초

Seismic behavior of steel reinforced concrete (SRC) T-shaped column-beam planar and 3D hybrid joints under cyclic loads

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.555-572
    • /
    • 2015
  • This paper presents an experimental study of three two-dimensional (2D/planar) steel reinforced concrete (SRC) T-shaped column-RC beam hybrid joints and six 3D SRC T-shaped column-steel beam hybrid joints under low cyclic reversed loads. Considering different categories of steel configuration types in column cross section and horizontal loading angles for the specimens were selected, and a reliable structural testing system for the spatial loading was employed in the tests. The load-displacement curves, carrying capacity, energy dissipation capacity, ductility and deformation characteristics of the test subassemblies were analyzed. Especially, the seismic performance discrepancies between planar hybrid joints and 3D hybrid joints were intensively compared. The failure modes for planar loading and spatial loading observed in the tests showed that the shear-diagonal compressive failure was the dominating failure mode for all the specimens. In addition, the 3D hybrid joints illustrated plumper hysteretic loops for the columns configured with solid-web steel, but a little more pinched hysteretic loops for the columns configured with T-shaped steel or channel-shaped steel, better energy dissipation capacity & ductility, and larger interlayer deformation capacity than those of the planar hybrid joints. Furthermore, it was revealed that the hysteretic loops for the specimens under $45^{\circ}$ loading angle are generally plumper than those for the specimens under $30^{\circ}$ loading angle. Finally, the effects of steel configuration type and loading angle on the seismic damage for the specimens were analyzed by means of the Park-Ang model.

압축과 전단 하중을 받는 인공 암석 절리의 수리적 거동에 관한 실험적 연구 (An Experimental Study for the Hydraulic Behavior of Artificial Rock Joint under Compression and Shear Loading)

  • 이희석;박연주;유광호;이희근
    • 터널과지하공간
    • /
    • 제10권1호
    • /
    • pp.45-58
    • /
    • 2000
  • 다양한 하중 조건하의 암석 절리에 대한 수리적 거동을 규명하기 위해서 수리전단 시험이 가능한 주기 전단시험 시스템을 설계, 제작하였다. 실험실에서 인공 절리 시료에 대한 압축,전단 조건하의 수리 시험을 실시하였다. 시험 전의 시료에 대한 3차원 간극 측정을 통해 절리의 간극 분포 특성을 규명하였다. 수직응력에 따른 투수계수 변화는 기존 수리 모델과 잘 일치하였다. 전단 하중하의 수리적 거동은 초기에는 팽창 특성을 따랐으며, 팽창의 증가에 따라 투수계수가 커겼다. 전단이 진행됨에 따라 유동률은 충전물 생성과 간극의 엇갈림으로 인해 다소 일정해졌다. 주기전단 하의 수리 거동 역시 돌출부 손상과 충전물 생성의 영향을 받았다. 또한 압축과 전단 하중하의 수리 간극과 역학 간극의 관계가 조사, 비교되었다.

  • PDF

Coupled testing-modeling approach to ultimate state computation of steel structure with connections for statics and dynamics

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Mesic, Esad
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.555-581
    • /
    • 2018
  • The moment-resistant steel frames are frequently used as a load-bearing structure of buildings. Global response of a moment-resistant frame structure strongly depends on connections behavior, which can significantly influence the response and load-bearing capacity of a steel frame structure. The analysis of a steel frame with included joints behavior is the main focus of this work. In particular, we analyze the behavior of two connection types through experimental tests, and we propose numerical beam model capable of representing connection behavior. The six experimental tests, under monotonic and cyclic loading, are performed for two different types of structural connections: end plate connection with an extended plate and end plate connection. The proposed damage-plasticity model of Reissner beam is able to capture both hardening and softening response under monotonic and cyclic loading. This model has 18 constitutive parameters, whose identification requires an elaborate procedure, which we illustrate in this work. We also present appropriate loading program and arrangement of measuring equipment, which is crucial for successful identification of constitutive parameters. Finally, throughout several practical examples, we illustrate that the steel structure connections are very important for correct prediction of the global steel frame structure response.

철근콘크리트 구조물에 대한 반복하중속도의 영향에 관한 연구 (Effects of Cyclic Loading Rate on response of Reinforced Concrete Structures)

  • 정란;박현수
    • 전산구조공학
    • /
    • 제2권3호
    • /
    • pp.77-84
    • /
    • 1989
  • 본 논문의 내용은 철근콘크리트 보-기둥 접합부가 지진 하중을 받을 때의 거동에 대하여 관찰한 것이다. 똑같이 제작된 두개의 시험체에 정적 반복하중과 동적 반복하중을 가하여 하중-처짐 곡선이나 파괴 성상 등에 관하여 차이점을 기록하였다. 동적하중을 받는 시험체의 거동은 내진설계 규준에서 일반적으로 쓰여지는 정적하중 하에서의 시험체의 거동과는 판이한 양상을 보여주었다. 시험체가 동적하중을 받을 때에는 정적하중을 받을 때 보다 1. 극한하중이 20-25% 증가하고 2. 높은 취성을 보이며 3. 균열이 집중되고 4. 휨파괴 보다는 전단파괴현상을 나타내었다.

  • PDF

횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가 (Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test)

  • 조성국;소기환;박웅기
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험 (Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers)

  • 노지은;허석재;이상현
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.

실지진하중의 진동삼축시험에 기초한 액상화 저항강도 산정 (Evaluation of Liquefaction Resistance Strength based on the Cyclic Triaxial Tests using Real Earthquake Loading)

  • 심재욱;김수일;최재순;박근보
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.67-74
    • /
    • 2002
  • An experimental assessment on the dynamic behavior of saturated sand which can consider the irregular characteristics of earthquakes was proposed. The equivalent uniform stress concept presented by Seed and Idriss has been applied to evaluate the liquefaction resistance strength to simplify earthquake loading. However, it was known that the liquefaction resistance strength of soil based on the equivalent uniform stress concept can't exactly mirror the dynamic characteristics of the irregular earthquake motion. In this study, estimation of the criterion of the liquefaction resistance strength was determined by applying real earthquake loading to the cyclic triaxial test. From the test results, relationships between excess pore water pressure and the earthquake characteristics such as magnitude or duration were determined. Magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were also proposed.

  • PDF

Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성 (Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites)

  • 윤현도;양일승;한병찬;복산양;전에스더;문연준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

압축피로에 의한 포천화강암의 P파속도 변화 특성 (P wave Velocity Variation of the Pochon Granite due to the Cyclic Loadings)

  • 김영화;장보안;김재동;이찬구;문병관
    • 자원환경지질
    • /
    • 제30권3호
    • /
    • pp.231-240
    • /
    • 1997
  • The behavior of rocks and microcrack development due to fatigue stresses are investigated using cyclic loading tests and ultrasonic velocity measurements. Twenty six medium-grained granite samples from the Pochon area are selected for measurements. Ultrasonic velocities are measured for samples before fatigue test to characterize the pre-existing microcracks. Then, thirteen different cycles of loadings with 70% and 80% dynamic strength are applied to the samples. The ultrasonic velocities are measured again to compare velocities after applications of fatigue stress with those before applications of fatigue stress. The results show that most microcracks are developed along the direction parallel to the axis of loading and that the amount of microcracks increases, as loading levels and numbers of cycle increase.

  • PDF