• Title/Summary/Keyword: Cyclic contact fatigue

Search Result 41, Processing Time 0.023 seconds

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

Worn Wheel/Rail Contact Simulation and Cultivated Shear Stresses

  • Noori, Ziaedin;Shahravi, Majid;Rezvani, Mohammad Ali
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Railway system is today the most efficient way for transportation in many cases in several forms of application. Yet, wear phenomenon, profile evolution, fatigue, fracture, derailment are the major worries (financial and safety) in this system which force significant direct and indirect maintenance costs. To improve the cyclic maintenance procedures and the safety issues, it can be very satisfactory to be informed of the state of wheel/rail interaction with mileage. In present paper, an investigation of the behavior of the shear stresses by logged distance is approached, by implementing the field measurement procedure, in order to determine the real conduct of the most important cause of defects in wheel/rail contact, shear stress. The results coming from a simulation procedure indicate that the amounts of shear stresses are still in high-magnitudes when the wheel and rail are completely worn; even though in simulation based on the laboratory measurements of profile evolutions, the stresses become significantly reduced by logged distance.

Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

  • Al-Shehri, Eman Z.;Al-Zain, Afnan O.;Sabrah, Alaa H.;Al-Angari, Sarah S.;Dehailan, Laila Al;Eckert, George J.;Ozcan, Mutlu;Platt, Jeffrey A.;Bottino, Marco C.
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.206-215
    • /
    • 2017
  • Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide ($Al_2O_3$) particles at different pressures. Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and ${\chi}^2$ tests (${\alpha}=0.05$). Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

Modal and Stress Analysis of Spur Gear in DC Motor Gearhead using Finite Element Model

  • Pratama, Pandu Sandi;Supeno, Destiani;Jeong, Seongwon;Park, Cunsook;Woo, Jihee;Lee, Eunsook;Yoon, Woojin;Choi, Wonsik
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.17-17
    • /
    • 2017
  • In electric agricultural machine the gearhead is needed to convert the high speed low torque rotation motion generated by DC motor to lower speed high torque motion used by the vehicle. The gearhead consist of several spur gears works as reduction gears. Spur gear have straight tooth and are parallel to the axis of the wheel. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modeling and simulation of spur gears in DC motor gearhead is important to predict the actual motion behavior. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress including bending fatigue. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of gearhead is simulated using ansys work bench software based on finite element method (FEM). The modal analysis was done to understand gearhead deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on gearhead to simulate the gear teeth bending stress and contact stress behavior. This methodology serves as an approach for gearhead design evaluation, and the study of gear stress behavior in DC motor gearhead which is needed in the small workshop scale industries.

  • PDF

Three-Dimensional Microstructural Modelling of Wear, Crack Initiation and Growth in Rail Steel

  • Fletcher, D.I.;Franklin, F.J.;Garnham, J.E.;Muyupa, E.;Papaelias, M.;Davis, C.L.;Kapoor, A.;Widiyarta, M.;Vasic, G.
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.106-112
    • /
    • 2008
  • Rolling-sliding, cyclic contact of wheel and rail progressively alters the microstructure of the contacting steels, eventually leading to micro-scale crack initiation, wear and macro-scale crack growth in the railhead. Relating the microstructural changes to subsequent wear and cracking is being accomplished through modelling at three spatial scales: (i) bulk material (ii) multi-grain and (iii) sub-grain. The models incorporate detailed information from metallurgical examinations of used rails and tested rail material. The initial 2-dimensional models representing the rail material are being further developed into 3-dimensional models. Modelling is taking account of thermal effects, and traffic patterns to which the rails are exposed.

  • PDF

The Performance Test on Me-DLC Films for Improving Wear Resistance of LM-Guide (LM 가이드의 내마모성 향상을 위한 Me-DLC 코팅박막의 성능평가)

  • Kang, Eun-Goo;Lee, Dong-Yoon;Kim, Seong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • Recently, surface modification technology is of importance to improve the wear resistance and the corrosive resistance for high accurate mechanical parts such as LM guide, Ball Screw and Roller Bearing etc., Those has generally featured on rolling contact mechanism to improve not only the wear and the friction, but also the accuracy and the corrosion performances. For surface modifications of high accurate mechanical parts, normally thermal spray, PVD, CVD and E.P. processes have been used with many materials such as DLC, raydent, W, Ni, Ti etc. Diamondlike carbon (DLC) films possess a combination of attractive properties and have been largely employed to modify the tribological behaviors such as friction, wear, corrosion, fretting fatigue, biocompatibility, etc. However, for rolling contact mechanism mechanical parts DLC films are needed to study for commercial benefit. Rolling contact mechanism has features on effects of cyclic motions and stresses, and also not simply sliding motions. The papers focused on the performance test of wear and corrosive resistance according to Me-DLC film thickness. And also, its thickness effect of wear analysis was carried out through the simulation of the maximum shear stress under the rolling contact surface. As the results, Me-DLC films have more potential to improve the wear resistance for high precision mechanical parts than raydent films.

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

Structural Analysis for Optimal Design of Anchor Bolts and Brackets for Fixing External Finishing Materials (외부마감재 고정용 앙카볼트 및 브라켓의 최적설계를 위한 구조해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2020
  • For the anchor bolts and brackets that fix the stone wall, which is an external finishing material, it is necessary to maintain the performance required for the mechanical structure from the initial design stage and secure high durability. For this, the design and safety evaluation in consideration of the load conditions are necessary, so the structural analysis applying the finite element analysis technique was performed as a method to verify durability. As a result of structural analysis for various shapes for optimal design, a reinforcing structure was added to alleviate the maximum stress generated at the rear part of the bracket in contact with the bolt. In addition, a reinforcing plate was additionally attached to the bracket to relieve the stress concentration of the L-shaped bracket to make the stress distribution uniform, so that the safety factor satisfies the standard conditions. In addition, the fatigue life analysis by cyclic load was performed, and the fatigue safety factor was analyzed. As a result, the durability was obtained.

Experimental Study for Establishing Rail Grinding Period in the Urban Railway (도시철도 레일연마주기 산정을 위한 시험적 연구)

  • Sung, Deok-Yong;Go, Dong-Chun;Park, Yong-Gul;Kong, Sun-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.447-454
    • /
    • 2010
  • The defects of rail head induced by fatigue and deterioration are mainly classified by two types ; one occurred on the surface of rail head the another occurred on the inner rail head. This study performed the surface irregularity measurement of rail head according to the passing tonnage in the urban railway. Also, we carried out microscopic structure test, chemical component test and micro-hardness test for the specimen which is the used rail on metro line by accumulated passing tonnage. As a result of this study, for new rail, it should be performed initial grinding in order to remove 0.3mm of de-carbonized layer. The preventive-cyclic grinding for preventing RCF defects is proposed two options : grinding by the whole line and grinding by specified sections.