• Title/Summary/Keyword: Cyclic Voltammetry (CV)

Search Result 278, Processing Time 0.024 seconds

Self-Assembled Monolayers of Dioctyl Diselenides on Au(111)

  • Choi, Jung-Seok;Lee, Yoon-Jung;Kang, Hun-Gu;Han, Jin-Wook;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1229-1232
    • /
    • 2008
  • The surface structure, electrochemical behavior, and wetting property of self-assembled monolayers (SAMs) formed by dioctyl diselenide (DODSe) on Au(111) were investigated by scanning tunneling microscopy (STM), cyclic voltammetry (CV), and contact angle measurements. In contrast to the formation of well-ordered SAMs by octanethiol on Au(111), the SAMs formed by DODSe have a disordered phase and many unusual vacancy islands (VIs). In addition, the formation of DODSe SAMs is largely influenced by the solution concentration used. DODSe SAMs formed in 5 $\mu$ M and 50 $\mu$ M solutions have two mixed domains consisting of missing-row ordered phases and disordered phases, while DODSe SAMs formed in 1 mM and 5 mM solutions have only disordered phases with an abnormally high VI fraction of 22-24%. We also found that the wetting property and electrochemical behavior of DODSe SAMs on Au(111) are markedly influenced by the formation of ordered SAMs and the density of VIs.

Study of the Electrochemical Redox Characteristics of Some Triazolopyrimidines

  • Maghraby, A.A. El;Elenien, G.M. Abou;Shehata, K.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2007
  • An electrochemical study related to the redox characteristics of Ethyl-3-acetyl-6-methyl-1, 4-diphenyl-4, 3a-dihydro-1, 3, 4-triazolino[3, 4-a] pyrimidine-5-carboxylate ester and its derivatives (1a-f) and (2a-e) in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), dimethylsulphoxide (DMSO) and tetrahydrofurane (THF) using $0.1\;mol\;dm^{-3}$ tetrabutylammonium perchlorate (TBAP) as a supporting electrolyte at platinum, glassy carbon and gold electrodes, has been performed using cyclic voltammetry (CV). Controlled potential electrolysis (CPE) is also carried out to elucidate the course of different electrochemical reactions through the separation and identification of the intermediates and final electrolysis products. The redox mechanism is suggested and proved. It was found that all the investigated compounds in all solvents are oxidized in a single irreversible one electron donating process following the well known pattern of the EC-mechanism to give a dimer. On the other hand, these compounds are reduced in a single irreversible one electron step to form the anion radical, which is basic enough to proton from the media forming the radical which undergoes tautomerization and then dimerization processes to give also another bis-compound through N-N linkage formation.

Fabrication of Hemoglobin/Silver Nanoparticle Heterolayer for Electrochemical Signal-enhanced Bioelectronic Application

  • Lee, Taek;Yoon, Jinho;Choi, Jeong-Woo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.556-560
    • /
    • 2017
  • A hemoglobin/silver nanoparticle heterolayer was fabricated for bioelectronic device with electrochemical signal-enhancement effect. As a device element, a hemoglobin, the metalloprotein, contained the heme group that showed the redox property was introduced for charge storage element. For electron transfer facilitation, a silver nanoparticle was introduced for electrochemical signal facilitation, the hemoglobin was immobilized onto Au substrate using chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the silver nanoparticle was immobilized onto fabricated hemoglobin/6-MHA heterolayers by layer-by-layer (LbL) method. The surface morphology and surface roughness of fabricated heterolayer were investigated by atomic force microscopy (AFM). The redox property of hemoglobin/silver nanoparticle heterolayer was investigated by a cyclic voltammetry (CV) experiment for obtaining an oxidation potential and reduction potential. Moreover, for the assessing charge storage function, a chronoamperometry (CA) experiment was conducted to hemoglobin/silver nanoparticle-modified heterolayer electrode using oxidation and reduction potentials, respectively. Based on the results, the fabricated hemoglobin/silver nanoparticle heterolayer showed that an increased charge storage effect compared to hemoglobin monolayer-modified electrode.

Study on Efficiency Improvement of OLEDs using Zn(phen)q as Electron Transporting Layer (Zn(phen)q를 전자 수송층으로 이용한 OLEDs의 효율 향상에 관한 연구)

  • Kim, Dong-Eun;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.313-314
    • /
    • 2005
  • Organic light emitting diodes(OLEDs) are widely used as one of the information display techniques. We synthesized (1,10-phenanthroline)- (8-hydroxyquinoline) [Zn(Phen)q]. We studied the improvement of OLEDs properties using Zn(phen)q. The Ionization Potential(IP) and the Electron Affinity(EA) of Zn(phen)q investigated using cyclic voltammetry(CV). The IP, EA and Eg were 7.leV, 3.4eV and 3.7eV, respectively. The PL spectrum of Zn(phen)q was yellowish green as the wavelength of 535nm. In this study, we used Zn(phen)q as electron transporting layer(ETL) inserted between emitting layer(EML) and cathode. As a result, Zn(phen)q is useful as electron transporting layer to enhance the performance of OLEDs.

  • PDF

Fabrication of Ti/IrO2/Ta2O5 Electrode with High Electrochemical Activity and Long Lifetime (전기화학적 활성과 내구성이 높은 Ti/IrO2/Ta2O5 전극 제조)

  • Kim, Da-eun;Yoo, Jaemin;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • Under a corrosive environment, electrodes that are applied in the water-treatment system need not only very high electrochemical activity for fast reactions, but also high durability for cost saving. Therefore, the fabrication condition of iridium electrodes was examined to produce a more durable iridium electrode in this study. Tantalum was selected as a binder to enhance the durability of the iridium electrode. Investigation of the weight ratio between the catalyst and the binder to improve electrochemical activity was performed. Also, to compare the effect of the different coating amounts of the catalyst, the results of CV (Cyclic Voltammetry) and EIS (Electrochemical Impedance Spectroscopy) were discussed. Furthermore, an ALT(Accelerated Lifetime Test) was designed and applied to the electrodes to determine the conditions for highly durable electrode fabrication.

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

The Thioacetate-Functionalized Self-Assembled Monolayers on Au: Toward High-Performance Ion-Selective Electrode for Ag+

  • Jin, Jian;Zhou, Wei-Jie;Chen, Ying;Liu, Yi-Long;Sun, Xiao-Qiang;Xi, Hai-Tao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.601-604
    • /
    • 2014
  • Two classes of morpholino-substitued thioacetate have been successfully synthesized and their electrochemical properties of self-assembled monolayers (SAMs) on Au electrode are measured by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The barrier property of the SAMs-modified surfaces is evaluated by using potassium ferro/ferri cyanide. The results suggest that the arenethioacetate forms higher-quality close-packed blocking monolayers in comparison with alkanethioacetate. Furthermore, it has shown that the barrier properties of these monolayers can be significantly improved by mixed SAMs formation with decanethiol. From our experimental results we find that the electron transfer reaction of $[Fe(CN)_6]^{3/4-}$ redox couple occurs predominantly through the pinholes and defects present in the SAM and both SAMs show a good and fast capacity in recognition for $Ag^+$. The morphological and elementary composition have also been examined by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).

Electrochemical Oxidation of Carbon Felt for Redox Flow Battery (Redox flow battery용 carbon felt 전극의 전기화학적 산화)

  • Jung, Young-Guan;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.721-727
    • /
    • 2011
  • All vanadium redox-flow battery (VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide rage of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. In this study, carbon felt electrodes were treated by electrochemical oxidation with KOH, and the cyclic voltammetry were studied in order to investigate redox reactivity of vanadium ion species with carbon felt electrodes. Besides the effect of electrochemical oxidation on the surface chemistry of carbon felt electrodes were investigated using the X-ray photoelectron spectroscopy (XPS). After electrochemical oxidation, XPS analysis of PAN based GF20-3 carbon felt electrode revealed on increase in the overall surface oxygen content of the carbon felts after electrochemical oxidation. Redox reaction characteristics using cyclic voltammetry (CV) were ascertained that the electrochemical treated electrode were more reversible than the untreated electrode.

Electrochemical Detection of Glutathione on SAMs on Gold Using an Electroactive Quininoid-Type Molecule

  • Kim, So-Hyun;Kim, Jae-Il;Park, Hye-Ri;Kim, Mi-Kyoung;Chong, Yoo-Hoon;Yeo, Woon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2574-2576
    • /
    • 2009
  • In this work, we describe a new sensor that specifically responds to biothiols, i.e., glutathione (GSH), in solution. An electrochemical transducing strategy was utilized and cyclic voltammetry (CV) was employed to monitor the presence of GSH in real time. Our approach harnessed self-assembled monolayers (SAMs) on gold consisting of an alkanethiolate which was terminated by electroactive quininoid moiety. Prior to thiol molecule treatment, the characterisitc reversible redox peaks of the electroactive quininoid group was observed, while the reduction peak was dramatically shifted upon a treatment of GSH. This sensor showed the capability to detect the GSH in solution in the range of 1 mM $\sim$ 100 aM. We believe that this strategy will provide an important tool for accurate, sensitive, rapid, and low-cost determination of GSH.

A Novel Sensor Based on Electropolymerization Poly(safranine) Film Electrode for Voltammetric Determination of 4-Nitrophenol

  • Liu, Xing-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1182-1186
    • /
    • 2010
  • A novel poly(safranine)-modified electrode has been constructed for the determination of 4-nitrophenol (4-NP) in natural water sample. The electrochemical behavior of poly(safranine) film electrode and its electrocatalytic activity toward 4-NP were studied in detail by cyclic voltammetry (CV) and adsorptive linear stripping voltammetry (LSV). All experimental parameters were optimized and LSV was proposed for its determination. In optimal working conditions, the reduction current of 4-NP at this poly(safranine)-modified electrode exhibited a good linear relationship with 4-NP concentration in the range of $8.0{\times}10^{-8}$ to $4.0{\times}10^{-5}mol\;L^{-1}$. The detection limit was $3.0{\times}10^{-8}mol\;L^{-1}$. The high sensitivity and selectivity of the sensor were demonstrated by its practical application for the determination of trace amounts of 4-NP in natural water and fruit samples.