• Title/Summary/Keyword: Cyclic Shear

Search Result 734, Processing Time 0.029 seconds

Experimental study of cyclic behavior of composite vertical shear link in eccentrically braced frames

  • Shayanfar, M.A.;Barkhordari, M.A.;Rezaeian, A.R.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.13-29
    • /
    • 2012
  • This paper is an experimental study on the behavior of vertical shear link in normal (steel section with and without stiffener) and composite (steel section with concrete located at the area limited to web and flanges of the section) configurations. This study is mainly aimed to perceive failure mechanism, collect laboratory data, and consider the effect of number of transverse reinforcements on strength and ductility of composite vertical links. There have been four specimens selected for examining the effects of different details. The first specimen was an I section with no stiffener, the second composed of I section with stiffeners provided according to AISC 2005. The third and fourth specimens were composed of I sections with reinforced concrete located at the area between its flanges and web. The tests carried out were of quasi-static type and conducted on full scale specimens. Experimental findings show remarkable increase in shear capacity and ductility of the composite links as compared to the normal specimens.

Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.441-453
    • /
    • 2017
  • In Y-shaped eccentrically braced frame fabricated with high strength steel (Y-HSS-EBF), link uses conventional steel while other structural members use high strength steel. Cyclic test for a 1:2 length scaled one-bay and one-story Y-HSS-EBF specimen and shake table test for a 1:2 length scaled three-story Y-HSS-EBF specimen were carried out to research the seismic performance of Y-HSS-EBF. These include the failure mode, load-bearing capacity, ductility, energy dissipation capacity, dynamic properties, acceleration responses, displacement responses, and dynamic strain responses. The test results indicated that the one-bay and one-story Y-HSS-EBF specimen had good load-bearing capacity and ductility capacity. The three-story specimen cumulative structural damage and deformation increased, while its stiffness decreased. There was no plastic deformation observed in the braces, beams, or columns in the three-story Y-HSS-EBF specimen, and there was no danger of collapse during the seismic loads. The designed shear link dissipated the energy via shear deformation during the seismic loads. When the specimen was fractured, the maximum link plastic rotation angle was higher than 0.08 rad for the shear link in AISC341-10. The Y-HSS-EBF is a safe dual system with reliable hysteretic behaviors and seismic performance.

Seismic performance of beam-to- SST column connection with external diaphragm

  • Rong, Bin;Yin, Shuhao;Zhang, Ruoyu;Wang, Lei;Yang, Ziheng;Li, Hongtao;Wan, Wenyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.633-647
    • /
    • 2020
  • This paper aims to study the seismic performance of external diaphragm connection between SST (square steel tube) column and H-shaped beam through experimental and analytical study involving finite element (FE) method and theoretical analysis. In the experimental study, three external diaphragm connection specimens with weak panel zone were tested under axial pressure on the top of the column and antisymmetric cyclic loads at the beam end to investigate the seismic performance of the panel zone. The hysteretic behavior, failure mode, stiffness and ductility of the specimens were discussed. Key point to be explored was the influence of the thickness of the steel tube flange on the shear capacity of the specimens. In the analytical study, three simplified FE models were developed to simulate the seismic behavior of the specimens for further analysis on the influence of steel tube flange. Finally, four existing calculation formulas for the shear capacity of the external diaphragm connection were evaluated through comparisons with the results of experiments and FE analysis, and application suggestions were put forward.

Effect of link length in retrofitted RC frames with Y eccentrically braced frame

  • INCE, Gulhan
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.553-564
    • /
    • 2022
  • Many existing reinforced concrete (RC) structures need to be strengthening for reason such as poor construction quality, low ductility or designing without considering seismic effects. One of the strengthening methods is strengthening technique with eccentrically braced frames (EBFs). The characteristic element of these systems is the link element and its length is very important in terms of seismic behavior. The link element of Y shaped EBF systems (YEBFs) is designed as a short shear element. Different limits are suggested in the literature for the link length. This study to aim experimentally investigate the effect of the link length for the suggested limits on the behavior of the RC frame system and efficiency of strengthening technique. For this purpose, a total of 5 single story, single span RC frame specimens were produced. The design of the RC frames was made considering seismic design deficiencies. Four of the produced specimens were strengthened and one of them remained as bare specimen. The steel YEBFs were used in strengthening the RC frame and the link was designed as a shear element that have different length with respect to suggested limits in literature. The length of links was determined as 50mm, 100mm, 150mm and 200mm. All of the specimens were tested under cyclic loads. The obtained results show that the strengthening technique improved the energy consumption and lateral load bearing capacities of the bare RC specimen. Moreover, it is concluded that the specimens YB-2 and YB-3 showed better performance than the other specimens, especially in energy consumption and ductility.

Evaluation of Steel Pull-Out of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부 철근의 뽑힘 평가)

  • Woo, Jae-Hyun;Park, Jong-Wook;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.833-841
    • /
    • 2010
  • In this report, the test results of five reinforced concrete beam-column joint subjected to cyclic load are presented. The main purpose of the research is to investigate the influence of the steel pull-out of the beam-column joints to the shear and ductile capacity of the RC beam-column assembles. In addition, the influence of the amount of beam reinforcement to the joint shear and ductile capacity is evaluated. Test results indicate that the yield penetration of steel bar increases as the joint shear strength ratio, $V_{j1}/V_{jby}$ decreases. And the slippage of the steel bars are varied according to the region of the beam-column joints. The pull-out of the steel bars of five specimens was almost the same regardless of the joint shear strength ratio, $V_{j1}/V_{jby}$. Because it was affected by not only the yield penetration of steel bar but also the axial elongation in the plastic hinge.

Evaluation of Shear Elastic Modulus by Changing Injection Ratio of Grout (그라우트 주입률 변화에 따른 전단탄성계수 평가)

  • Baek, Seungcheol;Lee, Jundae;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • Among various construction methods, deep soil stabilization by chemical method have been widely used in order to improve soft ground. Dynamic variables using ground(such as sand, weathered granite soil and rock) -structure interaction design affected by dynamic load and cyclic load were studied a lot. However, there is something yet to learn about earthquake resistant design regarding reinforced ground by grout. Therefore, in this study using RC test, the correlation between shear strain and shear modulus with change of water content and injection rate in normal portland cement and clay was compared and analyzed by using Ramberg-Osgood model normalization As the result, dynamic coefficient was considerably affected by water content and grout injection rate.

Proposing the Shear Force Equation of GFRP Strengthened Masonry Wall (유리섬유로 보강한 조적벽체의 전단내력식 설정에 관한 연구)

  • Kwon, Ki-Hyuk;Lee, Soo-Chul;Jung, Won-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.1-9
    • /
    • 2007
  • This study does by purpose that propose shear resisting force equation of reinforced masonry wall that is reinforced by GFRP(glass fiber reinforced polymer) based on result that is noted through cyclic loading of masonry wall and a shaking table experiment of mock that reflect identifying marks of masonry building which is constructed in domestic. It was Rocking mode to dominate failure of masonry wall in the experiment results, and the equations of UBC show the most resemblant value with experiment results. Through this study, propose the shear force equation of GFRP strengthened masonry wall as following. $$V_n=0.02A_n{\sqrt{f'_m}}+0.022b_gh_g(1+2{\alpha})^3{\sqrt{f_g}}(N/mm^2)$$.

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.

Estimation of the load-deformation responses of flanged reinforced concrete shear walls

  • Wang, Bin;Shi, Qing-Xuan;Cai, Wen-Zhe;Peng, YI-Gong
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • As limited well-documented experimental data are available for assessing the attributes of different deformation components of flanged walls, few appropriate models have been established for predicting the inelastic responses of flanged walls, especially those of asymmetrical flanged walls. This study presents the experimental results for three large-scale T-shaped reinforced concrete walls and examines the variations in the flexural, shear, and sliding components of deformation with the total deformation over the entire loading process. Based on the observed deformation behavior, a simple model based on moment-curvature analysis is established to estimate flexural deformations, in which the changes in plastic hinge length are considered and the deformations due to strain penetration are modeled individually. Based on the similar gross shapes of the curvature and shear strain distributions over the wall height, a proportional relationship is established between shear displacement and flexural rotation. By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for routine design work that can be applied to flexural walls with arbitrary sections and is capable of determining displacements at any position over the wall height. By further simplifying the analytical model, a simple procedure for estimating the ultimate displacement capacity of flanged walls is proposed, which will be valuable for performance-based seismic designs and seismic capacity evaluations.