• 제목/요약/키워드: Cyclic Dynamic Loading

검색결과 187건 처리시간 0.031초

내측연결형 임플란트에 체결한 지대주의 수직침하에 대하여 반복하중이 미치는 영향 (Effect of cyclic loading on axial displacement of abutment into implant with internal tapered connection: a pilot study)

  • 설현우;허성주;곽재영;김성균;한종현
    • 대한치과보철학회지
    • /
    • 제51권4호
    • /
    • pp.315-322
    • /
    • 2013
  • 연구 목적: 내측연결형 임플란트와 지대주의 연결체에 반복하중을 부여하였을 때 수직 침하를 평가하고자 하였다. 연구 재료 및 방법: 외측연결형 임플란트와 내측연결형 임플란트에 세 종류의 시멘트유지형 지대주를 각각 장착하였다. 즉, 외측연결형 지대주(Ext 그룹), 내측연결형 1-piece 지대주(Int-1 그룹), 내측연결형 2-piece 지대주(Int-2 그룹)를 사용하였으며, 각 그룹마다 7개의 시편을 준비하였다. 임플란트-지대주 연결체에 수직하중을 적용하기 위하여 임플란트 받침대에 고정한 후, 4 Hz의 빈도로 $150{\pm}10N$의 반복하중을 가하였다. 수직침하량은 0, 5, 10, 50, 100, 1,000, 5,000, 10,000회의 반복하중 후에 각각 측정하였다. 반복측정분산분석(RM-ANOVA)를 이용하여 반복하중의 영향을 분석하였으며, 패턴변화를 관찰하기 위하여 선형혼합모형(linear mixed model)을 사용하였다. 유의수준은5% 로 설정하였다. 결과: 10,000회 반복하중 후 수직침하량은, Ext 그룹에서 $0.714{\pm}0.488{\mu}m$, Int-1그룹에서 $5.286{\pm}1.604{\mu}m$, Int-2 그룹에서 $11.429{\pm}1.902{\mu}m$를 나타내었다. 패턴분석에서는, Int-1 그룹 및 Int-2 그룹에서 지속적인 수직침하가 관찰되었으며, Ext그룹에서는 수직침하현상이 관찰되지 않았다. 결론:10,000회 반복하중 후의 선형혼합모형을 통한 분석에서, Ext그룹은 수직침하현상을 보이지 않았으나, Int-1 및 Int-2 그룹은 지속적인 수직침하현상을 나타내었다. 또한, Int-2그룹에서 Int-1그룹보다 더 많은 수직침하량이 관찰되었다.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • 제5권6호
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Composite deck construction for the rehabilitation of motorway bridges

  • Greiner, R.;Ofner, R.;Unterweger, H.
    • Steel and Composite Structures
    • /
    • 제2권1호
    • /
    • pp.67-84
    • /
    • 2002
  • Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • 제20권1호
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.

원전 안전 1등급 기기의 유한요소 탄소성 시간이력 지진해석 결과에 미치는 가속도 가진 방법 내 기준선 조정의 영향에 대한 예비연구 (Preliminary Study on Effect of Baseline Correction in Acceleration Excitation Method on Finite Element Elastic-Plastic Time-History Seismic Analysis Results of Nuclear Safety Class I Components)

  • 김종성;박상혁
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.69-76
    • /
    • 2018
  • The paper presents preliminary investigation results for the effect of the baseline correction in the acceleration excitation method on finite element seismic analysis results (such as accumulated equivalent plastic strain, equivalent plastic strain considering cyclic plasticity, von Mises effective stress, etc) of nuclear safety Class I components. For investigation, finite element elastic-plastic time-history seismic analysis is performed for a surge line including a pressurizer lower head, a pressurizer surge nozzle, a surge piping, and a hot leg surge nozzle using the Chaboche hardening model. Analysis is performed for various seismic loading methods such as acceleration excitation methods with and without the baseline correction, and a displacement excitation method. Comparing finite element analysis results, the effect of the baseline correction is investigated. As a result of the investigation, it is identified that finite element analysis results using the three methods do not show significant difference.

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

반복재하에 의한 미액상화 재성형 풍화토의 변형 특성 (Deformation Characteristics of Non-liquefied, Reconstituted, Weathered Residual Soils due to the Cyclic Loading)

  • 최연수;윤찬영;장의룡;정충기
    • 한국지반공학회논문집
    • /
    • 제22권6호
    • /
    • pp.41-49
    • /
    • 2006
  • 이 논문에서는 반복적인 하중에 의해 발생한 동적 과잉간극수압의 발생과 소산을 실내시험을 통하여 연구하였다. 이를 위해 국내 건설 현장에서 건설재료로 널리 사용되고 있는 풍화토를 재성형하여 실내에서 반복삼축시험을 수행하였다. 그 결과 비배수 반복 재하 과정에서 발생하는 과잉간극수압은 반복재하하중과 구속압이 증가할수록 크게 나타남을 확인하였다. 여기서 이 두 가지 영향요소가 반영된 수정과잉간극수압비(MEPPR)를 제안하여, 과잉간극수압 거동을 반복재하횟수만으로 나타낼 수 있었다. 또한 과잉간극수압을 구속압으로 정규화한 과잉간극수압비(EPPR)를 이용하여, 구속압의 증가에 따라 감소하는 과잉간극수압 소산 시 부피변형률을 간편히 나타낼 수 있었다. 결론적으로 재성형 풍화토에 대하여 얻어진 실내 시험 결과를 토대로 지진 하중과 같은 동적 반복 재하 시 미액상화 조건에서 발생하는 침하량을 적은 수의 실험 결과로 간편하게 예측할 수 있는 방법 및 개념을 도출하였다.

Analysis on Thermoelastic Stress in the Cantilever Beam by Lock-in Thermography

  • Kang, K.S.;Choi, M.Y.;Park, J.H.;Kim, W.T.
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.273-278
    • /
    • 2008
  • In this paper, effects of thermoelastic stress by using lock-in thermography was measured in the cantilever beam. In experiment, a circular holed plate was applied to analyze variation of transient stress under the condition of repeated cyclic loading. And the finite element modal analysis as computational work was performed. According to the surface temperature obtained from infrared thermography, the stress of the nearby hole was predicted based on thermoelastic equation. As results, each stress distributions between 2nd and 3rd vibration mode were qualitatively and quantitatively investigated, respectively. Also, dynamic stress concentration factors according to the change of vibration amplitude were estimated for the resonance frequency.

Analytical fragility curves for typical Algerian reinforced concrete bridge piers

  • Kibboua, Abderrahmane;Naili, Mounir;Benouar, Djillali;Kehila, Fouad
    • Structural Engineering and Mechanics
    • /
    • 제39권3호
    • /
    • pp.411-425
    • /
    • 2011
  • This paper illustrates the results of a seismic vulnerability study aimed to derive the fragility curves for typical Algerian reinforced concrete bridge piers using an analytical approach. Fragility curves express the probability of exceeding a certain damage state for a given ground motion intensity (e.g., PGA). In this respect, a set of 41 worldwide accelerometer records from which, 21 Algerian strong motion records are included, have been used in a non-linear dynamic response analyses to assess the damage indices expressed in terms of the bridge displacement ductility, the ultimate ductility, the cyclic loading factor and the cumulative energy ductility. Combining the damage indices defined for 5 damage rank with the ground motion indices, the fragility curves for the bridge piers were derived assuming a lognormal distribution.

Ductility Assesment of Damaged RC Bridge Piers w with Lap-Spliced Bars

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.453-456
    • /
    • 2003
  • This research is to evaluate the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal reinforcement steels in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity. Six circular columns of 0.6m diameter and 1.5m height were made with two confinement steel ratios. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under an axial load, P=$0.1f_{ck}A_{g}$, and residual seismic performance of damaged columns was evaluated. Test results show that RC bridge piers with lap-spliced longitudinal steels behaved with minor damage even under artificial earthquakes with 0.22g PGA, but failed at low ductility subjected to the subsequent quasi-static load test. This failure was due to the debonding of the lap splice. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region showed significant improvement both in flexural strength and displacement ductility.

  • PDF