• Title/Summary/Keyword: Cyclic Delay Diversity

Search Result 27, Processing Time 0.027 seconds

Block Coding Techniques with Cyclic Delay Diversity for OFDM Systems

  • Du, Ting;Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.867-873
    • /
    • 2008
  • Cyclic delay diversity (CDD) is considered as a simple approach to exploit the frequency diversity in OFDM system. In this paper, we apply CDD to the conventional STBC/SFBC/STFBC-OFDM transmit diversity schemes for Rayleigh fading channels. We compare the performances of STBC/SFBC/STFBC with and without CDD schemes. Simulation results show that the combination of block coding with CDD works well when using the ITU-R M. 1225 channel for both Pedestrian A (Ped A) channel with the mobility of 3 km/h, and Vehicular A (Veh A) channel with the mobility of 120km/h. For a BER of $10^{-3}$, compared to the conventional block coding schemes, a gain of 2dB, 4dB, and 5dB is obtained under the Ped A channel environment by STBC-OFDM, SFBC-OFDM and STFBC-OFDM with CDD, respectively Under the Veh A channel. gains by the combined schemes are 6dB, 2dB, and 4dB, respectivcly.

Cooperative Diversity using Cyclic Delay for OFDM systems (OFDM 시스템을 위한 순환 지연을 사용하는 협력 다이버시티 기법)

  • Lee, Dong-Woo;Jung, Young-Seok;Lee, Jae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.172-178
    • /
    • 2008
  • Orthogonal Frequency Division Multiplexing (OFDM) is one of the most promising technologies for high data rate wireless communications. OFDM has been adopted in wireless standards such as digital audio/video broadcasting. The combination of OFDM and cooperative diversity techniques can provide the diversity gain and/or increased capacity. In this paper, the cooperative coding using cyclic delay diversity (CDD) for multiuser OFDM systems is introduced. To improve the beneficial effects of relays's cooperation, CDD is adopted in cooperative transmission of relays. Simulation results show the bit error rate (BER) for various consideration. The proposed scheme provides improved performance compared to delay.

Performance of differential Space-time Block Coded MIMO System using Cyclic Delay Diversity

  • Kim, Yoon-Hyun;Yang, Jae-Soo;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.41-45
    • /
    • 2007
  • Multi-input multi-output (MIMO) system can increase data rate, capacity and bit error rate (BER) performance compare to traditional single antenna system. However MIMO technique is pointed out the problem that has high complexity to design receiver. So a recent trend of research on the MIMO system pays more attention to simplified implementation of receiver structure. In this paper, we propose differential space time block code (STBC) for MIMO system with cyclic delay diversity (CDD). This structure can provide a very close performance to that of the conventional diversity scheme with maximum likelihood (ML) detection without channel estimation block while the receiver structure is highly simplified. Bit error rate (BER) performance of the proposed system is simulated for an AWGN channel by theoretical and simulated approaches. The results of this paper can be applicable to the 4G mobile multimedia communication systems.

  • PDF

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.

BER PERFORMANCE ANALYSIS OF CYCLIC DELAY DIVERSITY (CDD) TECHNIQUE WITH TURBO FEC (Turbo FEC를 장착한 COD(Cyclic Delay Diversity)기술의 BER 성능분석)

  • Kim, Dong-Bae;Oh, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.396-397
    • /
    • 2008
  • OFDM 송수신 시스템에서 채널성능을 개선하기 위해 CDD(Cyclic Delay Diversity) 기술을 적용하면, Frequency Interlea ving의 영향으로 인해 burst error가 randomize되어, convolutional code/Viterbi decoding FEC의 BER 성능개선 효과를 배가 할 수 있다. 그러나 차세대 통신시스템에 적극 활용되는 Turbo FEC는 자체 interleaving 구조를 가지고 있으므로, CDD기술과의 결합으로 인한 영향을 증명하기 위하여, 본 논문에서는 Turbo FEE를 사용하는 OFDM CDD시스템을 MATLAB을 이용한 computer simulation을 통해서 BER 성능을 비교분석 하였다.

  • PDF

A Linear Precoding Technique for OFDM Systems with Cyclic Delay Diversity (순환 지연 다이버시티를 사용하는 OFDM 시스템을 위한 선형 프리코팅 기법)

  • Hui, Bing;Kim, Young-Bum;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.197-204
    • /
    • 2009
  • Cyclic delay diversity (CDD) is considered a simple approach to exploit the frequency diversity, to improve the system performance in orthogonal frequency division multiplexing (OFDM) systems. Also, the linear preceding technique can significantly improve the performance of communication systems by exploiting the channel state in formation (CSI). In order to achieve enhanced performance, we propose applying linear preceding to the conventional CDD-OFDM transmit diversity schemes over Rayleigh fading channels. The proposed scheme works effectively with the accurate CSI in time-division-duplex (TDD) OFDM systems with CDD, where the reciprocity is ass umed instead of channel state feedback. For a BER of $10^{-4}$ and the mobility of 3 km/h, simulation results show that a gain of 6 dB is achieved by the proposed scheme over both flat fading and Pedestrian A (Ped A) channels, compared to the conventional CDD-OFDM system. On the other hand, for a mobility of 120 km/h, a gain of 2.7 dB and 3.8 dB is achieved in flat fading and Vehicular A (Veh A) channels, respectively.

A Linear Precoding Technique for OFDM Systems with Cyclic Delay Diversity

  • Hui, Bing;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.5
    • /
    • pp.253-264
    • /
    • 2008
  • Cyclic delay diversity (CDD) is considered a simple approach to exploit the frequency diversity, to improve the system performance in orthogonal frequency division multiplexing (OFDM) systems. Also, the linear precoding technique can significantly improve the performance of communication systems by exploiting the channel state information (CSI). In order to achieve enhanced performance, we propose applying linear precoding to the conventional CDD-OFDM transmit diversity schemes over Rayleigh fading channels. The proposed scheme works effectively with the accurate CSI in time-division-duplex (TDD) OFDM systems with CDD, where the reciprocity is assumed instead of channel state feedback. For a BER of $10^{-4}$ and the mobility of 3 km/h, simulation results show that a gain of 6 dB is achieved by the proposed scheme over both flat fading and Pedestrian A (Ped A) channels, compared to the conventional CDD-OFDM system. On the other hand, for a mobility of 120 km/h, a gain of 2.7 dB and 3.8 dB is achieved in flat fading and Vehicular A (Veh A) channels, respectively.

The blocking channel to reduce the performance decrease using the low correlation with cyclic delay scheme in LED-ID system (LED-ID 시스템에서 채널 차단에 따른 성능 열화를 줄이기 위한 저 상관 순환 지연 기법)

  • Lee, Kyu-Jin;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.319-325
    • /
    • 2015
  • We proposed the blocking channel to reduce the performance decrease using the low correlation with cyclic delay scheme in LED-ID system. LED-ID is based on the visible light to transmit the data. However, It is occurred the block channel by structure or environment of indoor for light of straightness. LED-ID system is degraded the performance by the block channel as loss of data, and burst error. To solve the block channel, the proposed system is overcome the burst error by low correlation among data, which is able to obtain the maximize time diversity gain to improve the performance of BER by cyclic delay scheme. The BER performance is evaluated by computer simulation according to channel parameter. The simulation results shows that proposed system gives much better performance than conventional system and constant cyclic delay scheme system.

Relationships between Diversity Techniques and Channel Coding Rates for OFDM and SC-FDE Systems (OFDM 및 SC-FDE 시스템에서의 다이버시티 기술과 채널부호화율의 상관관계)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.23-31
    • /
    • 2008
  • This paper addresses relationships between diversity techniques and channel coding rates for OFDM and SC-FDE systems. In OFDM systems it is important to select proper channel coding rates according to multi-path channel profiles and low channel coding rates are required with cyclic delay diversity compared to the case of space time coding. On the other hand, it is not necessary to use low channel coding rates for SC-FDE systems where DFT spreading is applied to OFDM and relatively high channel coding rates can be used regardless of diversity techniques.

Integer Frequency Offset Estimation by Pilot Subset Selection for DRM+ Systems with CDD (순환 지연 다이버시티를 갖는 DRM+ 시스템에서 파일럿 집합 선택을 이용한 정수배 주파수 오차 추정 기법)

  • Kwon, Ki-Won;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.481-487
    • /
    • 2011
  • Cyclic delay diversity (CDD) is a simple transmit diversity technique for an OFDM system using multiple transmit antennas. However, the performance of post-FFT estimation, i.e., integer frequency offset (lFO) is deteriorated by high frequency selectivity introduced by CDD. In this paper, the IFO estimation scheme is proposed for OFDM-based DRM+ system with CDD. Based on the pilot subset partitioning, the proposed IFO estimation scheme reduces the effect of performance degradation caused by frequency selectivity in OFDM systems with CDD . The simulation results show that the performance of the proposed IFO estimator is significantly improved when compared to that of the conventional IFO estimator.