• Title/Summary/Keyword: Cyclic Behavior

Search Result 1,553, Processing Time 0.033 seconds

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.

Mechanical Behavior of Cu Nanowire under Cyclic Loading (반복하중을 받는 구리 나노 와이어의 기계적 거동)

  • Lee, Sang-Jin;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1784-1787
    • /
    • 2008
  • Molecular dynamics (MD) simulations are used to analyze behavior of copper nanowires under cyclic loading. The embedded atom method (EAM) potential is employed to represent atomic interaction. Cyclic load is applied in two ways (Forward Tension / Reverse Compression and Forward Compression / Reverse Tension). The results show that dislocations are piled up as a result of plastic deformation during alternate tensile and compressive loading. After cyclic loading with a change of direction, yield stress decreases in consequence of the effect by the dislocation pileups. On the other hand, under FC/RT cyclic load, phase transformation represent associated with mechanical twinning. And copper nanowire can return to almost former undeformed condition during tensile loading at 300K.

  • PDF

Empirical Equations Predicting Major Parameters for Simulating Cyclic Behavior of Rectangular HSS Braces (장방형 각형강관 가새부재 이력거동 예측을 위한 주요변수의 경험식 제안)

  • Han, Sang Whan;Sung, Min Soo;Mah, Dongjun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.137-144
    • /
    • 2017
  • The cyclic behavior of braces is complex due to their asymmetric properties in tension and compression. For accurately simulating the cyclic curves of braces, it is important to predict the major parameters such as cyclic brace growth, cyclic buckling load, incidence local buckling and fracture with good precision. For a given brace, the most accurate values of these parameters can be estimated throughout experiments. However, it is almost impossible to conduct experiments whenever an analytical model has to be established for many braces in building structures due to enormous cost and time. For avoid such difficulties, empirical equations for predicting constituent parameters are proposed from regression analyses based on test results of various braces. This study focuses on rectangular hollow structural section(HSS) steel braces, which have been popularly used in construction practice owing to its sectional efficiency.

Nonlinear numerical simulation of RC columns subjected to cyclic oriented lateral force and axial loading

  • Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.745-765
    • /
    • 2015
  • A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Loading (CL), Cyclic Oriented Lateral Force and Axial Loading (COLFAL), Monotonic Loading (ML) or Oriented Pushover Force and Axial Loading (OPFAL) in any direction. In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of RC columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE) in general cases of CL, COLFAL or ML and are discretized into Variable Oblique Finite Elements (VOFE) in the particular cases of ML or OPFAL. For pushover particular case, a fairly fast converging and properly accurate nonlinear simulation method is proposed to assess the behavior of RC columns. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns.

Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading (지오그리드로 보강한 고속철도 노반의 거동 특성)

  • 신은철;김두환
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Cyclic Responses of Steel Reinforced ECC Column under Reversed Cyclic Loading Conditions (철근 보강된 ECC 기둥의 반복하중에 대한 이력거동)

  • Hyun, Jung-Hwan;Shim, Young-Heung;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.75-82
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate steel reinforced ECC (Engineered Cementitious Composites) column, which exhibits excellent crack control property and highly ductile behavior. Ordinary portland cement and high volume fly ash were used as binding materials in the mixture proportions for the purpose of achieving a high level of multiple cracking property with the tightly controlled crack width. To compare with the cyclic behavior of steel reinforced ECC column specimen, a conventional reinforced concrete column was prepared and tested under reversed cyclic loading condition. Based on the cyclic load test, ECC column exhibited higher cyclic behavior, compared to the conventional RC column, in terms of load carrying capacity and energy dissipation capacity.

Behavior of Steel Beam Connections under Cyclic Loading (반복하중을 받는 철골보 접합부의 거동)

  • 이승준;김상배
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.23-32
    • /
    • 1999
  • Behavior of H-beam connections under cyclic loadings is investigated experimentally in this study. The purpose of this study is to study the effect of steel properties and coping shape on the hysteretic behavior of H-beam connections. Five beam-to-column connection specimens were fabricated and tested under cyclic loadings. The load-rotation curves of the beam connections were mainly obtained. Deformation capacity and energy dissipation capacity of the connections are compared each other. The connections fabricated from SS400 showed good deformability and energy dissipation capacity, but those from SM490 showed brittle fracture at the connection. The coping shape at the connections showed a little difference in cyclic behavior.

  • PDF

Nonlinear Analysis of Slender Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 세장한 이중강판합성벽의 비선형해석)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.505-517
    • /
    • 2008
  • A numerical analysis method was studied to predict the nonlinear behavior of slender double skin composite walls. For convenience in numerical analysis, the model for the double skin composite wall was developed as a macroscopic model that can predict nonlinear behavior with relatively simplified models. For the wall showing flexure-dominant behavior, a multiple layer model was used. Each layer was modeled with composite elements of concrete and steel plate. An X-type truss model was used for coupling beams showing shear-dominant behavior. To describe the cyclic behavior of concrete and steel elements, simplified cyclic models for the materials were proposed. The proposed analysis model was applied to isolated walls and coupled walls with rectangular or T-shaped cross-sections. The analytical results were compared with existing test results.

Fatigue Behavior of SFRC Elements under High Cyclic Loading (사용반복하중에 대한 강섬유철근콘크리트 부재의 피로거동)

  • 강보순;황성춘;오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.431-438
    • /
    • 2001
  • Fatigue behavior of reinforced concrete(RC) and steel fiber reinforced concrete(SFRC) elements has been experimentally investigated. Fatigue behavior influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and load ratio $P_{u}$ $P_{o}$. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack widths and increases stiffness, and thus enhances the behavior in serviceability limit states also for high cyclic fatigue loadingngng

  • PDF

Hysteretic Behavior Characteristics of SM490-TMC Steel Column (SM490-TMC 강재를 적용한 기둥부재 이력거동의 특성)

  • Chang, Kyong Ho;Jang, Gab Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.833-840
    • /
    • 2006
  • In design of steel column member using TMCP steels, hysteretic behavior characteristics of steel column must be clarified. To predict hysteretic behavior of steel column using TMCP steels, a cyclic plasticity model is necessary which can consider the mechanical characteristics and stress-strain relationship of TMCP steels. In this paper, a cyclic plasticity model of SM490-TMC was formulated based on monotonic and cyclic loading tests. The formulated cyclic plasticity model was applied to 3-dimensional finite element analysis. Hysteretic behavior characteristics of steel circular column and H-section column using SM490-TMC was presented by carrying out numerical analysis. Also, influence of SM490-TMC on hysteretic behavior of steel column was presented by comparing analysis results both SM490 and SM490-TMC steel column.