• Title/Summary/Keyword: Cyclic AMP receptor protein(CRP)

Search Result 14, Processing Time 0.024 seconds

Mutant cAMP Receptor Protein Binds to DNA without DNA Bending (DNA 벤딩(휨) 없이 돌연변이 cAMP 수용체 단백질의 결합)

  • Gang, Jong-Back
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1225-1228
    • /
    • 2006
  • Cyclic AMP receptor protein (CRP) complexed with cAMP binds to DNA and induces sharp DNA bending around ${\sim}90$ degree. Previous publication (5), however, reported that mutant CRP:cGMP complex showed high migration rate relative to mutant CRP:cAMP complex on native polyacrylamide gel. To confirm DNA structural change in the presence of CRP and cyclic nucleotide, molar cyclization factor $(j_M)$ [13] was measured with 6 constructed DNA fragments. Nonlinear regression analysis of $j_M$ data indicated that mutant CRP did not induce DNA bending in the presence of cGMP but bent DNA in the presence of cAMP without any helical twist change in DNA.

Cyclic AMP Receptor Protein Adopts the Highly Stable Conformation at Millimolar cAMP Concentration (높은 cAMP 농도에서 cAMP 수용성 단백질의 열 안정화)

  • Kang, Jong-Baek;Choi, Young
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.751-755
    • /
    • 2003
  • Cyclic AMP receptor proteins(CRP) activate many genes in Escherichia coli by binding of cAMP with not fully known mechanism. CRP existed as apo-CRP in the absence of cAMP, $CRP;(cAMP)_2$$_2$ at low(micromolar) cAMP concentration, or $CRP;(cAMP)_4$ at high(millimolar) concentration of cAMP. This study is designed to measure the thermal stability of S83G CRP, which substituted glycine for serine at amino acid 83 position, with CD spectrapolarimeter at 222nm by the constant elevation of temperature from $20^{\circ]C\; to\; 90^{\circ}C\; at\; 1^{\circ}C/min$. The non-linear regression analysis showed that melting temperatures were 68.4, 72.0, and $82.3^{\circ}C$ for no cAMP, 0.1mM cAMP, and 5mM cAMP, respectively. Result showed the strong thermal stability of CRP by binding of additional cAMP molecules to region between the hinge region and helix-turn-helix(HTH) motif at 5mM cAMP concentration.

The Binding Affinities of Two Binding Sites(CRP1 and CRP2 Sites) by Cyclic AMP Receptor Protein at Lactose Operon (락토스 오페론에서 Cyclic AMP Receptor Protein에 의한 두 결합 부위(CRP1과 CRP2)의 결합 특성에 관한 연구)

  • Kang, Jong-Baek;Kwon, Gun
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.746-750
    • /
    • 2003
  • Lactose operon contains two CRP binding sites at promoter(CRP1 site) and operator(CRP2 site) regions at lac operon. CRP protein can bind to both sites with the different binding affinity. CRP1 site, major CRP binding site, acts the transcription activation with the fully unknown mechanism by binding of CRP. In this study, the binding affinities of CRP1 site and CRP2 site were measured with the fluorescein-labeled oligomers, which contain CRP1 site and the three different spacing sequences between GTGA and TCAC at CRP2 site. Results showed that CRP:cAMP complex bound to CRP1 site 3 times more strongly than CRP2 site and the base spacing between GTGA and TCAC was not the only factor to affect the binding affinity of CRP to CRP2 site.

Stability and Structure of S128A Mutant cAMP Receptor Protein

  • Choi, Young;Gang, JongBack
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.222-226
    • /
    • 2011
  • Cyclic AMP receptor protein(CRP) is involved in the activation of many genes corresponding to catabolite enzymes in Escherichia coli. In this study, mutant CRP(S128A) was used to elucidate the effect of Ser 128 on the cAMP-induced structural change. Based on the protease digestion and thermal analysis, serine 128 in CRP affects the cAMP binding capability and then structural change of CRP protein. In addition, CD spectra in near UV region revealed that S128A CRP retained the sensitive conformation to thermal effect relative to that of wild-type CRP, in spite of identical Tm values in the absence of cAMP.

Application of Temperature Gradient Gel Electrophoresis To cAMP Receptor Protein (온도 기울기 전기영동장치의 CAMP 수용성 단백질에 응용)

  • Gang, Jong-Back;Cho, Hyun-Young
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.309-314
    • /
    • 2004
  • Cyclic AMP receptor protein (CRP) is involved in the transcriptional regulation of more than 100 genes in E. coli. CRP dimer is converted into active form via the sequential conformation change of cAMP binding pocket, hinge region and HTH DNA binding motif by binding of cAMP. The temperature gradient gel electrophoresis (TGGE) was applied to CRP protein to know whether it was an efficient technique to study the conformational transitions and the thermal stability. TGGE showed the unfolding process of wild-type and S83G CRP proteins with the temperature gradient set from 29 to 71$^{\circ}C$ on nondenaturing polyacrylamide gel. Melting temperature (Tm) was 57$\pm$1 and 55$\pm$1$^{\circ}C$ for wild-type and S83G CRP, respectively in acidic buffer[89.8 mM Glycine and 24 mM Boric acid (pH 5.8)].

Thermal Denaturation of the Apo-cyclic AMP Receptor Protein and Noncovalent Interactions between Its Domains

  • Won, Hyung-Sik;Seo, Min-Duk;Ko, Hyun-Suk;Choi, Wahn Soo;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • Cyclic AMP receptor protein (CRP) is allosterically activated by cAMP and functions as a global transcription regulator in enteric bacteria. Structural information on CRP in the absence of cAMP (apo-CRP) is essential to fully understand its allosteric behavior. In this study we demonstrated interdomain interactions in apo-CRP, using a comparative thermodynamic approach to the intact protein and its isolated domains, which were prepared either by limited proteolysis or using recombinant DNA. Thermal denaturation of the intact apo-CRP, monitored by differential scanning calorimetry, revealed an apparently single cooperative transition with a slight asymmetry. Combined with circular dichroism and fluorescence analysis, the thermal denaturation of apo-CRP could be interpreted as a coupled process involving two individual transitions, each attributable to a structural domain. When isolated individually, both of the domains exhibited significantly altered thermal behavior, thus pointing to the existence of non-covalent interdomain interactions in the intact apo-CRP. These observations suggest that the allosteric conformational change of CRP upon binding to cAMP is achieved by perturbing or modifying pre-existing interdomain interactions. They also underline the effectiveness of a comparative approach using calorimetric and structural probes for studying the thermodynamics of a protein.

Study on the structure of cAMP receptor protein(CRP) by temperature change (온도변화에 의한 cAMP 수용성 단백질(CRP)의 구조)

  • 주종호;구미자;강종백
    • Journal of Life Science
    • /
    • v.10 no.3
    • /
    • pp.279-285
    • /
    • 2000
  • CRP (cyclic AMP receptor protein) regulate transcription of catabolite-sensitive genes in Escherichia coli. Wild-type and mutant CRP (S83G and S128A) proteins were used to measure the thermal stability and the temperature-dependent structural change by proteolytic digestion, UV spectrophotometer and CD spectrapolarimeter. The result indicated that wild-type CRP was more thermally stable than the mutant CRPs in the presence of cAMP. At a low temperature, wild-type CRP with cAMP was more sensitive to subtilisin than the mutant CRPs. At a high temperature, there was no difference of sensitivity to subtilisin among wild-type, S83G and S128A CRPs. CD spectra suggested that the secondary structure of CRP was destroyed partially at a high temperature.

  • PDF

Stability and Structural Change of cAMP Receptor Protein at Low and High cAMP Concentrations

  • GANG JONGBACK;CHUNG HYE-JIN;PARK GWI-GUN;PARK YOUNG-SEO;CHOI SEONG-JUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1392-1396
    • /
    • 2005
  • Proteolytic digestion and CD measurement of wild-type and mutant cyclic AMP receptor proteins (CRPs) were performed either in the presence or absence of cyclic nucleotide. Results indicated that transition of a structural change to the hinge region by the binding of cAMP to the anti site was required for the binding of cAMP to the syn site near the hinge region and, although the occupancy of cAMP in the anti site increased the protein stability, CRP adopted more a stable conformation by the binding of cAMP to the syn site.

Nuclear Magnetic Resonance Study on the CRP and CRP*RNA polymerase complex

  • Lee, Tae-Woo;Park, Sang-Ho;Lee, Bong-Jin
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.19-19
    • /
    • 1996
  • Cyclic AMP receptor protein (CRP) from E. Coli plays a key role in regulation of the expression of more than 20 genes of the bacterium. CRP binds in the presence of cAMP to a specific target site near the promoter of each gene under its regulation. CRP is a dimer (Mr~47,000) of two identical subunits. There are two binding domains in the CRP monomer, one for the binding of the cAMP and the other for the binding of specific DNA sequences. (omitted)

  • PDF

Binding Aspect of Cyclic AMP Receptor Protein to Symmetrically Synthetic 22-, 28- and 30-Base-Pair lac Promoters

  • Park, Sang-Ho;Lee, Tae-Woo;Hwang, Eun-Suk;Lee, Seung-Ki;Shin, Cha-Gyun;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.31-44
    • /
    • 1997
  • The effect of the binding of CRP to the symmetrically synthetic 22, 28, and 30 bp lac promoter was investigated by 1H NMR. The binding of cAMP*CRP to the 22 bp DNA did not bring about any changes in the chemical shift values, but did cause selective line broadening of imino proton resonances of specific base pairs. However, The binding of cAMP*CRP to the 28 and 30 bp DNA brought about large changes on the imino proton resonances that seems to be induced by DNA bending. We studied also the role of cAMP as an activator of DNA/CRP complex formation by gel mobility shift assay. Gel mobility shift assay revealed that the cAMP*CRP complex was not able to bind to the 22 bp DNA fragment, but was able to bind to the 28 bp DNA fragment of lac promoter region.

  • PDF