• Title/Summary/Keyword: Cycle type society

Search Result 1,399, Processing Time 0.032 seconds

New-Type Stirling Engine Employing the Scroll Mechanism (스크롤기구를 적용한 신형식 스털링 엔진)

  • Kim, Y.M.;Shin, D.K.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1709-1716
    • /
    • 2003
  • Stirling engine is a heat engine with a high potential efficiency, multi-fuel capability, its low emission, quiet operation, very low maintenance requirement and long life. The Stirling cycle can ideally achieve optimum thermodynamic efficiency of the Carnot cycle. But the actual efficiency of practical reciprocating Stirling engine is much less than that of ideal Stirling cycle due to several mechanical limits. This paper presents a new-type Stirling engine employing the scroll mechanism superior to the reciprocating Stirling engine. The new-type Stirling engine is characterized as traits of continuous and wholly seperated compression and expansion, one-way flow, direct cooling and heating through the extensive surfaces of scroll wraps. By means of this traits, the new-type Stirling engine can achieve thermodynamic cycle closer to the ideal Stirling cycle and have many mechanical merits. Also, the new-type Stirling cycle can be applied as Stirling refrigerator and Duplex Stirling machine.

  • PDF

A New Mathematical Formulation for the Classical Assembly Line Balancing Problem

  • Shin, Doo-Young;Lee, Daeyong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.217-228
    • /
    • 1994
  • This paper presents a new integer formulation (Type III ALB) for a single model assembly line balancing problem. The objective of the formulation is to minimize the total idle time, which is defined as the product of the number of work stations and the cycle times minus the total work content. This formulation considers currently existing Type I (minimizing the number of work stations for a given cycle time) and type II (minimizing the cycle time for a given number of work stations) formulations as its special cases and provides the global minimum solutions of the cycle time and the number of work stations. This information would be of great value to line designers involved in designing new assembly lines and rebalancing old lines under flexible conditions. Solution methods based on combination of Type I and Type II approaches are also suggested and compared.

  • PDF

STELLAR MAGNETIC ACTIVITY AND LONG TERM LUMINOSITY VARIATIONS OF LATE TYPE STARS.: II. STELLAR ACTIVITY PERIODS BASED ON PARKER'S DYNAMO THEORY

  • Park, Chang-Bum;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.19 no.2
    • /
    • pp.91-107
    • /
    • 1986
  • Making use of our extended version of $\ddot{O}pik's$ convection theory, we have calculated magnetic cycle periods of the sun and late type stars by using Parker's dynamo theory, where we have included the non-linear effect. We presented a relationship between the computed cycle period and spectral type to analyze observed magnetic activities of the late type stars and long-term luminosity variations. It is found that (1) the stellar magentic-cycle period increases towards the later spectral type, (2) the rapid rotation facilitates the activity-related luminosity variation of stars later than about K5, (3) differential rotation plays a critical role in determining the magnetic activity-cycle period, and (4) the non-local effect should be taken into account in order to understand the observed long-term luminosity variations.

  • PDF

evaluation of Performance Characteristic on Triple Effect Absorption Cycle (삼중효용 흡수사이클의 성능특성 평가)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

Development of National Life Cycle Inventory Database on Irrigation Water by Agricultural Dam (관개용 저수지 농업용수의 국가 전과정 목록분석 데이터베이스 구축)

  • Kim, Young-Deuk;Park, Pil-Ju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • The objective of the study is to develop life cycle inventory (LCI) database of dam, a major facility for irrigation water supply. The types of database developed are three out of nine dams according to the size of the wate r storage capacity: two kinds larger than 500,000 $m^3$ depending on gate for discharging (Type 1) and the other dam smaller than 500,000 $m^3$ (Type 2). According to the LCI analysis, type 1 larger than 500,000 $m^3$ storage capacity with gate has the lowest environment impact in the 6 impact categories. The impact of the type 1 accounts for 7~35 % of the type 2 for supplying irrigation water. Comparing with the environment impacts of water for other uses such as drinking and industrial water, the impacts of 1 $m^3$ irrigation water supply is 4~45 % of the one for industrial water supply and 1~16 % of the drinking water's. The three types of LCI DB on the irrigation water by dams will be useful in the application of Life Cycle Assessment in agricultural products and environmental labelling including carbon footprint since it is complied to the guidelines of LCI DB constr uction issued by Ministry of Environment and Ministry of Knowledge Economy.

A Thermodynamic Study on Exhaust Heated Gas Turbine Cycle (연소기 후치 가스터빈에 관한 열역학적 연구)

  • Park, J.K.;Ohu, S.C.;Yang, O.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.18-28
    • /
    • 1994
  • An exhaust-heated gas turbine cycle equipped with a waste heat recovery boiler and ammonia absorption-type refrigerator using waste heat is newly devised and analyzed. The general performance of this cycle is compared with that of the conventional gas turbine cycle. This cycle shows a potential high efficiency. When 1500K of gas turbine inlet temperature the efficiency is 53 percent as compared to 45 percent for a conventional combined cycle. Suction cooling of this cycle leads to improve the thermal efficiency and the specific output.

  • PDF

Optimization Study on the Performance Analysis of Organic Rankine Cycle for Characteristics of Low Temperature Heat Sources (저온열원의 특성에 따른 ORC 성능해석 최적화 연구)

  • Eom, Hong-Sun;Yoon, Cheon-Seog;Kim, Young-Min;Shin, Dong-Gil;Kim, Chang-Gi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Optimization procedures of performance analysis for ORC(Organic Rankine Cycle) system are established to the characteristics of low temperature heat sources such as open-type and closed-type. Effective heat recovery and heat extraction related to maximum power of the cycle as well as heat quality and thermal efficiency must be considered in the case of the open-type low temperature heat source. On the other hand, in the case of the closed-type low temperature heat source, only thermal efficiency is important due to constant heat input. In this study, thermal efficiency and exergy efficiency representing a level of close to Carnot cycle are studied, as useful index for the optimization of the ORC system. To validate the results of cycle analysis, those are compared with appropriate experimental data of ORC system as a thermal efficiency point of view.

Development of an analysis model for the first half cycle non-limiting type Hybrid SFCL (22.9kV 반주기후한류방식 복합형 초전도한류기 해석모델 개발)

  • Lee, Seung-Ryul;Yoon, Jae-Young;Lee, Byong-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • For real power system application of SFCL, it is necessary to develop an analysis model of the SFCL. In Korea, hybrid SFCL of the first half cycle non-limiting type have been jointly developed by KEPRI and LS Industrial Systems through DAPAS program. In this study, we developed a PSCAD/EMTDC analysis model of the hybrid SFCL of the first half cycle non-limiting type. The simulation results of the developed model are in agreement with the test results of the real SFCL. The developed SFCL model is tested in real power system model.

Separate Type Rotary Engine Cycle Analysis (분리형 로터리엔진 사이클 해석)

  • Ki, Dockjong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • A separate type rotary engine consisting of a compressor and an expander is under development. The engine motoring, compressor pressure, and fuel combustion have been tested with the initial prototype for operability checks of the mechanism. This paper describes an engine cycle analysis method designed specifically for this new-concept engine. The unique operational mechanism of the engine and the thermodynamic properties of each step of air intake, compression, filling of combustion chamber, combustion, expansion and exhaust were analyzed. The cycle efficiencies of this engine according to various engine design parameters as well as the cooling effect of compressed air between the compressor and expander can be easily calculated with this method; further, some case studies are presented in this paper.

A Study on the Organic Rankine Cycle for the Fluctuating Heat Source (가변 열원에서 작동하기 위한 유기랭킨 사이클에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.12-21
    • /
    • 2014
  • An organic Rankine cycle was analyzed to work at the optimal operating point when the heat source is fluctuated. R245fa was adopted as a working fluid, and an axial-type turbine as expander on the cycle was designed to convert the heat energy to the electricity since the turbo-type expander works at off-design points better than the positive displacement-type expander. A supersonic nozzle was designed to increase the spouting velocity because a higher spouting velocity can produce more output power. They were designed by the method of characteristics for the operating fluid of R245fa. Three different cases, such as various spouting velocities, various inlet total temperatures, and various nozzle numbers, were studied. From these results, an optimal operating cycle can be designed with the organic Rankine cycle when the available heat source as renewable energy is low-grade temperature and fluctuated.