• Title/Summary/Keyword: Cycle number

Search Result 2,086, Processing Time 0.049 seconds

Studies on the Cycle of the Seminiferous Epithelium in Korean Native Cattle (한우의 세정관상피주기에 관한 연구)

  • 한방근;임정택;이재홍;김우권
    • Korean Journal of Animal Reproduction
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 1987
  • The cycle of the seminiferous epthelia in the testis of matured Korean Native Cattle was divided into eight stages. The results were summarized as follows: 1. Type A spermatogonia a, pp.ared twice as many at stage 2 as compared to stage 1, while maximum numbers were the average of 2.8 at stage 2. The intermediate and Type B spermatogonia were found during the stage 3 to 8, stage 6 to 8, respectively. The leptolene primary spermatocytes were not observed during the stage 5 to 7, while the pachytene primary spermatocytes were shown the least in number at stage 4, the secondary supermatocytes could be seen only at stage 4 and the round spermatids were not observed at stage 3, 4. 2. The relative frequencies of the eight stages of the cycle of the seminiferous eptithelia were 24.9, 14.2, 19.0, 6.3, 3.7, 7.9, 10.3 and 13.9%, respectively. 3. Some of the nuclei of Sertoli cells transformed from the "parallel" type to the "perpendicular" type. This evolution took place from stage 1 to 5, when the number of "perpendicular" type nuclei reached a peak and the number was decreased in the rest of the stages.sed in the rest of the stages.

  • PDF

Mechanical Properties of Soil under Repeated Load (반복하중(反復荷重)을 받는 흙의 역학적(力學的) 특성(特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • In case of repeated wheel-loads are acted on subbase course material, field test is generally executed to get the design standard, but the study shows dynamic properties of soils especially under repeated loads, which have not been well known to us. We try not only to obtain yield stress and elastic modulus of soil in terms of rheological model interpretation but also to investigate the influence of the repeated loads. Yield stress of soil induces hardening until approaching critical value along with the increase in number of cycle, whereas the change in modulus of elasticity with respect to the number of cycle greatly depends on the strength of repeated stress, if weak in strength of repeated stress, the modulus of elasticity increases along with the number of cycle, while if strong, it tends to decrease.

  • PDF

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.

A Study on Fatigue Crack Growth Retardation Phenomena of Al 7075--T6 Alloy under Multiple overload(I) (다중 과하중에 의한 A1 7075-T6 합금의 피로균열 성장지연현상에 관한 연구)

  • 이택순;이유태
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.96-104
    • /
    • 1992
  • Aircraft structures and engineering structures are always subject to variable amplitude loads. Variable amplitude loads include some kind of loading history; for example, constant amplitude load, single peak overload and block overload etc. Crack growth under variable amplitude loading exhibits retardation effect. In this study, the 4 point bending fatigue test was performed by hydrolic servo fatigue testing machine on 7075-T6 Al-alloy. The retardation effect of overload ratio and numbers of overload cycle was quantitatively studied. 1) Change of retardation effect against increment of overload ratio is more evident when the multiple overload is applied than single overload is done. 2) The number of overload cycle is very important factor about the crack growth retardation effect when the overload ratio is more than 1.75; that is not when the overload ratio is less than 1.75. 3) Overload affected zone size increased gradually by increment of crack growth retardation effect. 4) Crack driving force is more greatly reduced when the crack tip branched off two direction than it sloped to one direction.

  • PDF

Does Correction Factor Vary with Solar Cycle?

  • Chang, Heon-Young;Oh, Sung-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.97-101
    • /
    • 2012
  • Monitoring sunspots consistently is the most basic step required to study various aspects of solar activity. To achieve this goal, the observers must regularly calculate their own correction factor $k$ and keep it stable. Relatively recently, two observing teams in South Korea have presented interesting papers which claim that revisions that take the yearly-basis $k$ into account lead to a better agreement with the international relative sunspot number $R_i$, and that yearly $k$ apparently varies with the solar cycle. In this paper, using artificial data sets we have modeled the sunspot numbers as a superposition of random noise and a slowly varying background function, and attempted to investigate whether the variation in the correction factor is coupled with the solar cycle. Regardless of the statistical distributions of the random noise, we have found the correction factor increases as sunspot numbers increase, as claimed in the reports mentioned above. The degree of dependence of correction factor $k$ on the sunspot number is subject to the signal-to-noise ratio. Therefore, we conclude that apparent dependence of the value of the correction factor $k$ on the phase of the solar cycle is not due to a physical property, but a statistical property of the data.

Life-Cycle Cost Optimization of Slab Bridges with Lightweight Concrete (경량 콘크리트를 이용한 슬래브교의 생애주기비용 최적설계)

  • 정지승;조효남;최연왕;민대홍;이종순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.257-264
    • /
    • 2002
  • This study presents a life-cycle cost (LCC) effectiveness of a concrete with lightweight aggregate. A number of researchers have made their efforts to develop a lightweight concrete, since it is difficult to apply conventional concrete using general aggregate to heavy self-weight structures such as long span bridges. In this study, an optimum design for minimizing the life-cycle cost of concrete slab bridges is performed to evaluate the life cycle cost effectiveness of the lightweight concrete relative to conventional one from the standpoint of the value engineering. The data of physical properties for new concrete can be obtained from basic experimental researches. The material properties of conventional one are acquired by various reports. This study presents a LCC effectiveness of newly developed concrete, which is made by artificial lightweight aggregate. A number of researchers have made their efforts to develop a lightweight concrete, since it is difficult to apply conventional concrete using general aggregate to heavy self-weight structures such as long span bridges. From the results of the numerical investigation, it may be positively stated that the new concrete lead to, the longer span length, the more economical slab bridges compared with structures using general concrete.

  • PDF

The Chronic and Unpredictable Stress Suppressed Kisspeptin Expression during Ovarian Cycle in Mice

  • Kim, Seung-Joon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Chronic and unpredictable stress can disrupt the female reproductive system by suppression for secretion of gonadotrophin-releasing hormone (GnRH) and gonadotrophin, resulted in ovarian malfunction and infertility. In the recent days, kisspeptin has been highly highlighted as a hypothalamic peptide which directly stimulates synthesis and release for GnRH. However, in spite of the key role of kisspeptin in the female reproductive system, little information is still available on the changes of its expression during ovarian cycle under stressed condition. Therefore, we induced chronic and unpredictable stress series to the female mice to analyze kisspeptin expression in the brain and ovary. Stressed mice exhibited changes of behavior and body weight gain during the stress assessment, which suggested that the present stress model in mice was successfully established. In the brain level, kisspeptin expression was attenuated than control. In the ovary level, the stressed mice displayed irregularly shrunk oocytes with broken zona pellucida throughout the follicle stages, pyknotic granulosa cells, decreased number of developing follicles and increased number of atretic follicles than the control. In case of kisspeptin expression in the whole ovary tissue, the expression level was decreased in the stressed mice. In detail, the less intensity of kisspeptin expression in the antral follicles phase was observed in the stressed mice than control mice, indicating that local function of kisspeptin during ovary cycle is highly associated with development of ovarian follicles. We expect that the present study has important implications for the fields of reproductive biology.

Experimental study on damage and debonding of the frozen soil-concrete interface under freeze-thaw cycles

  • Liyun Tang;Yang Du;Liujun Yang;Xin Wang;Long Jin;Miaomiao Bai
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.663-671
    • /
    • 2023
  • Freeze-thaw cycles induce strength loss at the frozen soil-concrete interface and deterioration of bonding, which causes construction engineering problems. To clarify the deterioration characteristics of the interface under the freeze-thaw cycle, a frozen soil-concrete sample was used as the research object, an interface scanning electron microscope test under the freeze-thaw cycle was carried out to identify the micro index information, and an interface shear test was carried out to explore the loss law of interface shear strength under the freeze-thaw cycle. The results showed that the integrity of the interface was destroyed, and the pore number and pore size of the interface increased significantly with the number of freeze-thaw cycles. The connection form gradually deteriorates from surface-to-surface contact to point-to-surface contact and point-to-point contact, and the interfacial shear strength decreases the most at 0-3 freeze-thaw cycles, with small decreases from to 3-8 cycles. After 12 freeze-thaw cycles, the interfacial shear strength tends to be stable, and shear the failure occurs internally in the soil.

Low Cycle Fatigue Characteristics of High Strength Low Alloy Steel (고강도 저합금강의 저주기 피로특성)

  • Kim, Jae-Hoon;Kim, Duck-Hoi;Lee, Jong-Hyun;Cho, Seong-Seock;Jeon, Byoung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.169-174
    • /
    • 2001
  • Low cycle fatigue tests are performed on high strength low alloy steels that be developed for submarine material. The relation between absorbed plastic strain energy and numbers of cycle to failure is examined in order to predict the low cycle fatigue life of structural steels by using plastic strain energy method. The cyclic properties are determined by a least square fit techniques. The life predicted by the plastic strain energy method is found to coincide with experiment data and results obtained from the Coffin-Manson method. Also the cyclic behavior of structural steels is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of structural steels are investigated according to changing tempering temperatures. In the case of PFS steels, the $\varepsilon$-Cu is formed in 550C of tempering temperature and enhances the low cycle fatigue properties.

  • PDF