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AN UPPER BOUND OF THE BASIS NUMBER OF THE
SEMI-STRONG PRODUCT OF CYCLES WITH BIPARTITE
GRAPHS

MOHAMMED M. M. JARADAT

ABSTRACT. An upper bound of the basis number of the semi-strong prod-
uct of cycles with bipartite graphs is given. Also, an example is presented
where the bound is achieved.

1. Introduction

Throughout this paper, we assume that graphs are finite, undirected and
simple. We adopt the standard notation A(G) for the maximum degree of the
vertices of G. Our terminologies and notations will be as in [4]. Let G be a
graph and ey, es,..., € be an ordering of its edges. Then any subset .S
of E(G) corresponds to a (0,1)-vector ((},¢z,. ., ¢ py) € (Z2)/FD] with
¢ =1ife € Sand {; = 0if e; ¢ S. Let C(G), called the cycle space,
be the subspace of (Z2)IE(?) generated by the vectors corresponding to the
cycles in G. We shall say that the cycles themselves, rather than the vectors
corresponding to them, generate C(G). It is well known that if r is the number
of components of G, then dim C(G) = |E(G)| — |V(G)| + r (see [5]).

A basis of C(G) is called d-fold if each edge of G occurs in at most d of the
cycles in the basis. The basis number of G, b(G), is the smallest non-negative
integer d such that C(G) has a d-fold basis. The required basis of C(G) is a
basis that is b(G)-fold. Let G and H be two graphs, ¢ : G — H be an
isomorphism and B be a (required) basis of C(G). Then {¢(c)|c € B} is called
the corresponding (required) basis of B in H. The first use of the basis number
of a graph was the theorem of MacLane [13] when he proved that a graph G is
planar if and only if (G) < 2. Schmeichel proved that there are graphs with
arbitrary large basis numbers. Moreover, Schmeichel proved that b(K,,) < 3.

Let G71 and G2 be two graphs. The direct product G = G A G5 is the
graph with the vertex set V(G) = V(G1) x V(G2) and the edge set E(G) =
{(u1,u2)(v1, v2)|lu1vs € E(G1) and usvy € E(G2)}. The semi-strong product
G = G e G is the graph with the vertex set V(G) = V(G;) x V(Gs) and
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the edge set E(G) = {(u1,u2)(vy,v2)luivn € E(G1) and uova € E(G2) or
u; = v1 and ugve € E(G2)}. The cartesian product G = G; x Gy is the
graph with the vertex set V(G) = V(G1) x V(G2) and the edge set E(G) =
{(ul,uQ)(vl,v2)|u1v1 S E(Gl) and ug = Vs Or UVy € E(GQ) and u; = ’Ul}.
Thus, by specializing G and G- in the direct product by two edges, say e =
uyv1, € = ugvy, we have that E(e Ae') = {(uy,u2)(v1,v2), (u1,v2)(v1,u2)}.
Also, by specializing G; and G in the cartesian product by a vertex and an
edge, say u, e = uyv1, we have that F(u x e) = {(u,u1)(u,v1)}. It is clear that
the semi-strong product is non-commutative.

The semi-strong product and the direct product was studied by Schmeichel
[14], Ali [1] and Jaradat and Alzoubi [12]. They proved the following results.

Theorem 1.1. ([14]) For each n > 5, b(K, ® P») < 1+ b(Ky,).
Theorem 1.2. ([1]) For each n,m > 5, b(K,, ® Kiz) < 3+ b(Km) + b(Ky).

A tree T consisting of n equal order paths { P, P®), ..., P(M} is called an
n-special star if there is a vertex, say vy, such that v; is an end vertex for each
path in {PM, PG .. P} and V(PDYNV (PU)) = {v;} for each i # j (see
[7)-

Theorem 1.3. ([12]) Let G be a bipartite graph and C, be a cycle. Then
b(GeCp) < 4+b(G). Moreover, b(GeCy) < 3+b(G) if G has a spanning tree
contains no subgraph isomorphic to a 3-special star of order 7.

Many papers appeared to investigate the basis number of other graph prod-
ucts, we refer the reader to [2], [3], [8], [9], [10} and [11].

In view of the above results and since the semi-strong product is non com-
mutative, one is naturally led to the following question:

Problem. Can we obtain an upper bound of the basis number of the semi-
strong product of cycles with bipartite graphs?

This question will be solved in the affirmative. Moreover, we will give an
example to show the upper bound is achieved. The method employed in this
paper is based in part on the ideas of Ali [1], Jaradat [7] and Schmeichel [14].
Throughout this paper fp(e) stands for the number of cycles in B containing
the edge e, E(B) = U4egE{(d) where B C C(G) and Bg stands for a required
basis of G.

2. Main results

In this section, we give an upper bound of the basis number of the semi-
strong product of a cycle with a bipartite graph. Also, as a consequence we
show that b(C,, e P,,) < 3 and the equality holds under some conditions on
their orders. Throughout this work C,, = ujug - - unuy, €; = ujus41 for each
1<4<n—1and e, =u,ui. Since trees have no uniform forms, we recall the
following proposition which decompose trees into paths of order 3 and stars.
This proposition will be used frequently in our work.
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Proposition 2.1. ([7]) For each tree T of order > 3, there is a set of paths
S(T) = {Pél),Pém, ey ém)}, which called a path sequence, such that

(i) each P is a path of length 2,

(i) UL, E(R") = B(T),

(iii) every edge uv € E(T) appears in at most three paths of S(T),

iv) each PY) contains one edge which is not in \ 1=} P{?,

(v) if wv appears in three paths of S(T'), then the paths have forms of either
uva, uvd and cuv or auv,duv and uve, where a,d, c are vertices of T,
(vi) every edge with an end vertex occurs in at most two paths of S(T),

(vii) m = |V(T)| -2 ={E(T)| - 1.

Remark 2.2. The proof of Proposition 2.1 (see [7]) guarantees the existence

of S(T') which satisfies the conditions (i)-(vii) in the proposition in addition

to the following condition: (viii) there exists at least two edges of T each of
which occurs only in one path of S(T) and incident with an end vertex. In

fact, PélV(T)l"m contains one of those two edges.

~—

Let e = uv and €’ be edges. We define A..r to be the cycle which consists

of the edge set E(e Ae')UFE(ux e )UE(v xe'). Let T be a tree with S(T) =
{Pél) = aibicr, P = GQbQCQ,--.,Pélv(T)l_m = ajy(7)|-2 bv(m)—2 v (r)—2}

as in Proposition 2.1 and Remark 2.2. For each j = 1,2,...,|V(T)| — 2, we
define
By po = {(w, a5)(u, bj){u, ¢)(v,b;)(u, a5)},
and [V(T)|-2
B(uv)T = Uj:l B(uv)Ps(j) .

e’)

Lemma 2.3. Let e = uv and T be a tree with ¢’ € E(T). Then Bguv)T =
Buwyr U Acer 15 linearly independent subset of C(e o T).

Proof. We use induction on |S(T')| to show that B(,,)r is linearly independent.

If [S(T)| = 1, then B(y,)r consists only of one cycle and so it is linearly inde-

pendent. By induction step on |S(T)| and noting that B(uv) pUEM)I-1) consists
3

only of one cycle, we have that both of UE&T)[_ZB(W)P@) and B(uU)P(|E(T)|—1)
3 3

are linearly independent. By Remark 2.2, Ps(lE(T)I_l) contains an edge, say
b B(T)|-1€|E(T)|-1, Which does not appear in any other path of S(T'). Thus,
(u, byg(T)|-1) (U, €| E(T)|—1) Occurs only in B(uv)P:s(|E(T)|—1). Therefore,

B

B(T)|—1
(uv) PYETI-D

can not be written as a linear combination of cycles of ULE&T”—QB(W) pw- And
3

s0, B(yyr is linearly independent. Note that A,/ contains the edge of E(v xe’)
ZU))T is linearly independent.
The proof is complete. O

which is not in any cycle of By,,yr. Therefore, BE
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Lemma 2.4. Let Cy, be a cycle and T be a tree with e’ € E(T). Then B(c T =
(Un IB(e

(wiwiss)T ) UB y ) yr 18 linearly independent subset of C(CreT). More-
over, 31 | Ac,er (mod 2) is the only linear combination of cycles of Bééi)T

which contains no edge of {u; x el e€ E(T)}.

Proof. By Lemma 2.3, each of B (usrs +1)T and Bgu )u )T is linearly independent.
Since
YNEBE) ) =E(u; x ¢

(ujuje)T

EUZIBY)

(wiui42)T
which is an edge, U}~ 11 B(u wipa)T is linearly independent. Similarly,

2)NEBE) )= E(uy x /) U E(un x €

n 1 (8
( B (unul)T

(wguis1)T
which is a set of two edges. Thus, B C))T is linearly independent. We now
show the second part. It is easy to see that > 1 | Ac,er (mod 2) contains no
edge of {u; x e| e € E(T)}. Since any linear combination of cycles of By, )1
(or B(y,u,)T) contains at least two edges of E(u; x T) (or E(u, x T)) and
E(u; xT) ﬂE(uj x T) = @ for each ¢ # j, as a result any linear combination of
cycles of (U2 1lB(uiui+1)T) U By, u,)r contains at least two edges of E(u; x T)
for some 1 < 7 < n. Let O be any linear combination of cycles of S where §
is a proper subset of {A.,. }™ ;. Then there is at least one cycle of {Ae,er }y
which does not belong to S, say Ae, e ¢ S for some 1 < ip < n. Hence, O
contains exactly one edge of E(u;, X T) and at most one edge of (u; x T') for
eachi=1,2,...,ip—-1,i0+1,. n Therefore, by the above arguments, any

linear combination of cycles of B )T other than > | Ae,er (mod 2) must
contains at least one edge of {u; >< el e € E(T)}. The proof is complete. O
Lemma 2.5. For each tree T and cycle C,,
3, if T is a path,
b(Cr e T) < { 5, f T is not a path.
Proof. Let
S(T) = (P = arbuer,..., PN = apy iy aby ey —aeiv ey -2}
as in Proposition 2.1 and Remark 2.2. By Remark 2.2, we may assume that
bjv(1)|-2€)v(T)|—2 appears only in P(W(T)| Y Let Béé )T be the linearly inde-
pendent set as in Lemma 2.4 which is obtained by taking €’ = bjy (1)|—2¢|v (1)|—2-
Now, for each j =1,2,...,|V(T)| — 2, set
Bpw = {B(i+1)P3(j)

= (wir1, a5) (Uir2, bj) (i1, ¢5)(us, bj)(uitr, a5)li = 1,2,...n — 2}

U {Bnpa(j) = (Un, a;)(u1, ;) (Un, ¢;)(Un~1,b;)(un, ;) }

U{B, p = (u1,a5)(uz, bj)(us, ¢5) (tn, by)(ur, a5) }-

PY
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Let Bgir) = Ulj‘;(lT)l_zBP(j). Then, by Theorem 5.1 of Jaradat [7], Bg(r) is
3

a linearly independent subset of C(C, A T) and so it is linearly independent

subset of C(C,, # T'). Now we have two cases to consider:

Case 1. n is odd. We now show that Bg(ry U BEgZ)T is linearly independent.
By Lemma 2.4, any linear combination of cycles of ngi Yo Ae, o contains an
edge of E(u; x T') for some 1 <4 < n which is not in any cycle of Bs(r). Thus,
Bsiryu (BEgZ)T — Aene’> is linearly independent. Now, one can see that 4,

is linearly independent of cycles of Bg(7y U <BE(2J,,)1)T - Aene’) if and only if F

is linearly independent of cycles of Bg(ry U (Béecj)T - Aene/> where

F = (u,byry—2)(ue, vy —2)(us, by my=2) -+ (Un, by (1) —2)
(w1, vy —2) (U2, by 1y ~2) * * (Uns v 1y —2) (U1, By (1) —2)-

Therefore, to show that Bgry U B((gi)T is linearly independent it is enough

to prove that Bg(ry U <B§2)T - Aene/) U {F} is linearly independent. By
Theorem 5.1 of Jaradat [7], Bg(r) U {F'} is linearly independent. By Lemma
2.4, any linear combinations of cycles of Bééi)T — A, contains at least one
edge of E(u; x T) for some 7. On the other hand no cycle of Bs(r) UF contains
such edges. Hence Bg(ryU (ngi)T ~ Ae, e )U{F} is linearly independent. And
so Bg(ry U B((Z:T)L)T is linearly independent. Let ¢;, be an end vertex such that
bj,¢j, appears only in P:,Ej‘)) and bj,cj, # byv(r)|-2¢v(T)—2 (see Remark 2.2).
Set
C* = {(u1, ¢jo )(u1, bj5) (w2, 5o )(uz, bjo) -+ (ttn, bjo Hua, €50)}-

Now, we prove that B(C, ¢ T) = {C*} U Bg(1) U B((Z‘,)l)T is a linearly inde-
pendent set. For simplicity, let B =B Assume that
C* can be written as a linear combination of cycles from Bg(r) U ngi)T, say
R1,Ry,. .., Rg. Since (u;, cj, )(ui, bj,) € E(C*) and the only cycle contains such

(untintr) P{F (unu1)P§F

n
=1 B(uiui+1)P§]°)>

and

an edge is B(u_ Pl for each i =1,2,...n, as a result (U
i 3

ui+1)
C {Ri1,Ra,...,Ri}. Since {(ui, aj,)(ui, bjo)};; C E( ?ZIB(UWHI)Péjo)
(uis ajo ) (us, bj,) € E(C*) for each i = 1,2,...,n, and since (u;, aj,)(us, bj,) ap-
pears only in Péj °) and in at most two other paths, say P?Ell) and/or Pélz), as a
result there is a set A; = {1k}21=§12 such that each member 1; of A; associates
with a set A§1k) C{1,2,...,n}. Furthermore, UlkeAlAgl’“) =1{1,2,...,n} and
<U1k€Al UieAglk) B(Uiui+1)P3(1k)) C {Ry,R2 ,...,Ri}. For each 1; € Ay, let

a1, by, be the edge of Pél’“) which is not aj;b;,. Let By = {1;|1; € A; and
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Pél’“) contains an edge which appears in no other paths of S(T)}. Since
{(ui,alk)(ui,blk)ﬂk €A —Biic A(ll’“)}
C B ((O11 B nypp) @ (Brees Sicapw Bruaernypg))

and (u;, 01, )(ui,b1,) ¢ E(C*) for each 1y € A1 — By, € A(ll’“), and since

us, a1, )(ui, b1, ) appears only in P(l’“) and in at most two paths for each 1; €
k k 3

Ay — By, as a result there is a set Ay = {2k}22:§14 such that each member

2, of Ay associates with a set Aéz’“). Furthermore, B; U (UleAzAg’“)) =

2
{1,2,...,n}, a1,b1, € E(Pé k)) and also (U2k€A2 UieAg“k) B(UWHI)P;%)) C
{R1,Rs,...,Ri}. For each 2;, € Ay, let az, by, be the edge of P?EQ’“) which is

not a1, b1,. Let By = {242 € A and Péz’“) contains an edge which appears
in no other paths of S(T)}. Since

{(ui,azk)(ui,bz,c)pk € Ay — Bg,i S Agk)}
CE <<®?:16(uiui+1)133(j0)) @ (@lkeAl 61'6451'“) B(uiuiﬂ)Psflk))
® (692‘36‘42 @iGAgzk) B(u«;uz‘+1)P§2k)))

and (u;,as, )(u;,be, ) ¢ E(C*) for each 2, € Ay — Ba,i € Agz’“), and since
(us, a2, )(ui, be,) appears only in P§2’°) for each 2, € As — Bs, as a result
there is a set Az = {3k}2":518 such that each member 3, of As associates

with a set Ags’“). Further, B; U B U (ngeAgAgsk)) ={1,2,...,n}, ag, by, €

3
E(Pé ’“)) and also (UBkEAs UiEAéa’“) B(uiui+1)P3(3k)) C {R1,Rg,...,Ry}. For
each 3 € As, let a3, b3, be the edge of P3(3’°) which is not ag, by,. Let

B3 = {3k|3k € A3 and P3(3’°) contains edge which appears in no other paths of

S(T)}. By continuing in this process and since |S(T')| is finite, there is an inte-
i
ger | and a set 4; = {lk}iff such that each member [ of A; associates with

a set Afl’“). Furthermore, (U;Z]B;) U (UlkEAlAl(lk)) = {1,2,...,n} and also

(UlkGAl UieAl(l’c) B(uiui+1)Pl(l’“)) C {Ry,Rs,...,Ry}. Moreover By = {li|ly €
A; and Pél’“) contains an edge which appears in no other paths of S(T')} = A;.

Thus, for every t; € By, Pg(tk) contains an edge, a:, by, which appears in no
other path of S(T). Therefore,

Uf‘.:l {(uivbtk)(uhctk”tk € By,i € Aik}

CE ((®?:1B(uiui+1)P3(j0)) ® (GalkeAl EBiEAEl’“) B(UiUi+1)P3(1k))
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G- (EBlkeAl eaiEAl(lk) B(Ui’lli-}—l)P?Elk))) .

To this end, we consider the following subcases:
Subcase 1a. At least one edge of Ul_; {bs, ¢t |tk € B} differs from

by (zy|-2€pv (1)1-2>
say by, ci,, (Clearly by, ci, # bjocjo). Then C* contains at least one edge of
the form (us, by, )(us, ct,,, ) for some 1 < i < n. This is a contradiction.
Subcase 1b. All the edges of Ul_; {b:, cs, |tx € B;} have the form

biv(ry|—2€|v (1) -2

Then either A¢,er € {R1,Ra, ..., Ri} or Ae,er € {R1,Ra, ..., Ri}. Therefore,
we consider the following two subsubcases:

Subsubcase 1bl. A, € {R1,Rs,...,Rx}. Then A_ .+ ¢ {R1,Ro,..., Ri}
and so Ae,er € {R1,Rz2,...,Rr}. Continuing in this way, we get Ac.o €
{R1,Ry,...,Ri}. Therefore, (u1,bjy(ry—2)(u1, cjy(r)—2) € E(C*). This is a
contradiction.

Subsubease 1b2. A, ., € {Ri,R>,..., R.}. Then by using the same argu-
ment as in Case 1bl we get (un, bjv(r)|-2)(Un, v () |—2) € E(C*). This is a
contradiction.

Therefore, B(Cy, ® T') is linearly independent. Since

B(CnoT)| = |Bsyl+ B rl +1C"|
no V(D)2
= n(BEDM|-1+> (( Y. D+1)+1

=1 j=1
= n(|EM)| -1 +n(V(T)|-1)+1
= 2n|E(T)|—n+1=dim C(C, e T),
B is a basis for C(C,, ¢ T). To complete the proof of the lemma, it suffices to
show that B satisfies the required fold. Let e € C, # T. Then
(1) ife= (ui7 bjo)(u'i-’rh cjo) or (u;, cjo)(ui+17bjo)7 then
fBsry(6) 1,y () €1, and fiory(e) £ 1.
(Cn)T

(2) If e = (us, by (z)1,) (Wir1, v (r)),) OF (Ui, €y (1)) (i1, by (1)),)> then
fBsir (&) <1, f .y () £2, and fic=y(e) = 0.

(Cn)T

(3) If e = (us,a5)(wit1,b5) or (ui,a;)(ui—1,b;) or e = (us,b5)(usy1,¢5) or
(i, b;)(ui—1,¢;) and is not one of the edges as in (1) and (2), then

2, if T is a path,

3, 1if T is not a path,

1, if T is a path, _
{ 2, if T is not a path, and f(c-y(e) =0.

st(T) (e) <

fB(el) (e) S

(Cn)T
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(4) If e = (u;, b;)(us, ¢;) where j # jo or |[V(T)| — 2, then

. 2, i T is a path,
fBs¢r (€) =0, fsgeclz)T (e) < { 3, if T is not a path,

(5) If e = (w4, bj, ) (us, ¢jy ), then
flss(T) (e) = 07 fB(e/) (e) S 27 and f{C*}(e) S 1.

(Cn)T

and frc«y(e) = 0.

(6) If e = (ui, b|V(T)|—2)('U'i7C|V(T)|—2)a then
fBS(T) (e) = 07 fB(e’) (e) S 2? a’nd f{C*}(e) = 0
(Cn)T

Case 2. n is even. Then choose B(Cy, o T) = Bg(r) U (Bgélz)T —Ae, e )U{F1}
U{F2}, where Bg(r) and (BEE’,)L)T — A, o) are as in Case 1,

Fy = (u1, 5o ) (2, bjo ) (s, €50) - - (un, bjo ) (11, ¢ ).
and

Fy = (u1, bjo ) (uz, cjo ) (us, by ) - - - (un, ¢jo ) (u1, bjo )
where bj,cj, is as in Case 1. By Theorem 5.1 of Jaradat [7], Bgr)U{F1}U{F2}
is linearly independent. By Lemma 2.4, every linear combination of cycles of
B((Z:Z)T — A, e contains an edge of E(u; x T') for some 1 < i < n, on the other
hand no cycle of Bg(ryU{F1}U{F:} contains such an edge. Thus, B(C,,eT) is
linearly independent. By using the same arguments as in Case 1 and counting
the cycles of B(C,, ¢ T'), we have that B(C,, e T") is a basis for C(C,, ¢ T) and
satisfies the required fold. The proof is complete. O

The following proposition (See [6] and [7]) will be needed in proving the next
result.

Proposition 2.6. Let G be a bipartite graph and Py be a path of order 2. Then
G A Py consists of two components G1 and Ga each of which is isomorphic to

G.

Let G be a graph. Then T stand for a spanning tree of G such that
A(Tg) = min{A(T') | T is a spanning tree of G} (See [2]).

Theorem 2.7. For any bipartite graph H and cycle C,,, we have

3, if Ty is a path,

b(Cp e H) < b(H) + { 5, if Ty is not a path.

Proof. Let B(C,eT) be the basis of C(Cp,eTy) as in Lemma 2.5. Let E(C,,) =
{e1,€2,...,e,}. By Proposition 2.6, for each i = 1,2,...,n, e; A H consists of
two components each of which is isomorphic to H. Thus, we set Be, = Bé})ub’é?)
where Bg) and Bg) are the corresponding required basis of By of the two copies
of Hine;AH. Set T = U, Be,. Since E(B{Y) N E(BY) = @ for each i =
1,2,...,nand E(B,)NE(B;) = @ for each i # j, we obtain that 7 is linearly
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independent. We now show that the cycles of 7 are linearly independent of
the cycles of B(C, @ T). Let O = Yicaciio, m) 2oger ¢! (mod 2) where
c,(gji) € B.,. By Proposition 2.6, e; A Ty is a forest for each 4. Thus, the ring
sum cg) éBcg) D-- -eac((g?i) contains at least one edge of E(e; A{H — Ty )) where
H — Ty is the complement of Ty in H. Since E(e; AH)N E(e; ANH) = &
for each i # j, the ring sum O = Dicac{12,...n} @?il cg) contains at least
one edge of E(C, A (H — E(T))). On the other hand, no cycle of B(C,, ¢ Ty)
contains such kind of edges. Thus, B(C,, ® Ty} UT is linearly independent.
Now, for each ¢ = 1,2,...,n, let B,, be the corresponding required basis of
By in u; x H. Let V = |Ji; By,, and B(C, ® H) = B(Cr, e Ty)JT V.
Since E(u; x H) N E(u; x H) = @ whenever ¢ # j, we conclude that V is
linearly independent. Note that each linear combination of cycles of V contains
at least one edge of E(u; x (H — Ty)) for some 1 < i < n where H — Ty is the
complement of Ty in H, on the other hand no cycle of B(C,, ¢ Tx)UT contains
such an edge. Therefore, B(C), ® H) is linearly independent. To this end, we
have

IB(C,, » H)| IB(C,, ¢ T)| +|T| + |V

= 2|BE(Ty)l —n+1+)_|Bel+ Y |Bu,l
i=1 i=1
= 2n|E(Ty)| —n+ 1+ 2ndim C(H) + ndim C(H)
= 2n(|E(Ty)|+dim C(H)) —n+1+n(|E(H)| - |[V(H)| +1)
2n|E(H)| + n|E(H)| —n|V(H)| +1 = dim C(C,  H).
Thus, B(C,e H) is a basis for C(C,e H). Now, one can easily see that B(C,, e H)
satisfy the required fold. The proof is complete. 0O

The following result gives an example where the above upper bound is
achieved.

Corollary 2.8. b(C,, ® P,,,) = 3 if one of the following holds:
(i) n is even and m > 3;
(ii) n is odd and m > 2.

Proof. To prove the corollary it suffices to show that C,, e P, is non-planar.
Let P, = viva---vp. To prove (i), consider the subgraph H; whose ver-
tex set {(u1,v1), (u2,v1), (ua,v1), (us,v1), ..., (Un,v1), (u1,v2), (uz,v2),
(u3,v2),. .. , (un,v2), (uz,vs3)} and whose edge set consists of the following
nine paths: P1 = (ul,vl)(ul,vg), P2 = (ul,vl)(uQ, ’Ug), P3 = (’ul,?}z)(’LLQ,
v1), Py = (uz,v1){uz,v2), Ps = (u1,v2)(u2,vs), Ps = (u2,v2)(u2,v3), Py =
(us, v2)(u2,v3), Ps = (u2,v1)(u3,v2), Py = (u1,v1)(tn,v2)(tn,v1)(tn_1,v2)

* (u4,v1)(us, v2). Then Hy is homeomorphic to K3 3 and so Cy,e P, is non pla-
nar. To prove (ii), consider the subgraph H, whose vertex set {(u1,v1), (uz,v1),
(u3,v1)s -+ 5 (U, v1), (u1,v2), (uz,v2), (us,v2), . - ., (Un,v2)} and whose edge set
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consists of the following nine paths: P; = (uy, v1)(u1,v2), P2 = (u1,v1)(uz, v2),
P3 = (u1,v2)(u2,v1), Py = (Un,v1)(Un,v2), Ps = (u1,v2)(un,v1), Ps = (u1,v1)

(Un,v2), Pr = (ug,v1)(u2,v2), Ps = (uz,v1)(us,v2) -+ (Un—1,v1)(Un,ve),
Py = (ug,v2)(us,v1) - (un—1,v2)(tn,v1). Then Hy is homeomorphic to K33
and so C,, & P, is non planar. The proof is complete. O
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