• Title/Summary/Keyword: Cycle analysis

Search Result 6,113, Processing Time 0.048 seconds

Analysis for water cycle change using SWAT model and water balance analysis depending on water reuse in urban area (SWAT모델과 물수지분석을 이용한 물재이용에 의한 도시물순환 변화 분석)

  • Kim, Young-Ran;Hwang, Seong-Hwan;Lee, Sung-Ok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.447-457
    • /
    • 2015
  • Water cycle within the human civilization has become important with urbanization. To date, water cycle in the eco-system has been the focus in identifying the degree of water cycle in cities, but in practicality, water cycle within the human civilization system is taking on an increasing importance. While in recent years plans to reuse water have been implemented to restore water cycle in cities, the effect that such reuse has on the entire water cycle system has not been analyzed. The analysis on the effect that water reuse has on urban areas needs to be go beyond measuring the cost-savings and look at the changes brought about in the entire city's water cycle system. This study uses a SWAT model and water balance analysis to review the effects that water reuse has on changes occurring in the urban water cycle system by linking the water cycle within the eco-system with that within the human civilization system. The SWAT model to calculate the components of water cycle in the human civilization system showed that similar to measured data, the daily changes and accumulative data can be simulated. When the amount of water reuse increases in urban areas, the surface outflow, amount of sewer discharge and the discharged amount from sewage treatment plants decrease, leading to a change in water cycle within our human civilization system. The determinant coefficients for reduced surface outflow amount and reduced sewer discharge were 0.9164 and 0.9892, respectively, while the determinant coefficient for reduced discharge of sewage treatment plants was 0.9988. This indicates that with an increase in water reuse, surface flow, sewage and discharge from sewage treatment plants all saw a linear reduction.

Determination of Optimum Batch Size and Fuel Enrichment for OPR1000 NPP Based on Nuclear Fuel Cycle Cost Analysis (OPR1000 발전소의 핵연료 주기비분석을 통한 최적 배취 크기와 핵연료 농축도 결정)

  • Cho, Sung Ju;Hah, Chang Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.256-262
    • /
    • 2014
  • Cycle length of domestic nuclear power plants is determined by the demand-supply plan of utility company. The target cycle length is achieved by adjusting the number of feed fuel assembly and fuel enrichment. Traditionally, utility company first select the number of feed fuel assembly and then find out the fuel enrichment to achieve the special cycle length. But it is difficult to find out if this method is most economical than any other combinations of the enrichment and batch size satisfying the same cycle length. In this paper, core depletion calculation is performed to find out the optimum combination of the enrichment and batch size for given target cycle length in terms of fuel cycle cost using commercial core design code; CASMO/MASTER code. To minimize the uncertainty resulting from transition core analysis, levelized fuel cycle cost analysis was applied to the equilibrium cycle core in order to determine the optimum combination. The sensitivity study of discount rate was also carried out to analyze the levelized fuel cycle cost applicable to countries with different discount rates. From the levelized fuel cycle cost analysis results, the combination with smaller batch size and higher fuel enrichment becomes more economical as the discount rate becomes lower. On the other hand, the combination with higher batch size and lower fuel enrichment becomes more economical as the discount rate becomes higher.

A Study on the Determination of Replacement Time for Military Vehicle Using Availability Analysis ­ Focused on 2 \frac{1}{2} Ton Cargo­ (군용 기동장비의 가용도 분석을 통한 교체시기 결정에 관한 연구 ­2 \frac{1}{2} 톤 차량을 중심으로­)

  • 하형호;강성진
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.2
    • /
    • pp.81-99
    • /
    • 2003
  • This paper propose a method determining life cycle for military vehicle using availability analysis. Many studies determining life cycle for military equipments have been done recently However, those studies focused on economic life such as average system cost method, equivalent annual cost method and cumulative operations cost method. In many case, those results are not appropriate in deciding replacement in the field situation, we consider an effective life cycle method using availability concept. In order to determine an equipment life cycle. Two kinds of availability is considered. One is equipment yearly availability, the other is operational availability with operating distance per year. The life cycle is determined by achieving unit target availability level. The result using this concept for K­511 military vehicle life cycle is about 19 years, which is longer than previous studies.

Cell Cycle Regulation in the Budding Yeast

  • Nguyen, Cuong;Yoon, Chang-No;Han, Seung-Kee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.278-283
    • /
    • 2005
  • Cell cycle is regulated cooperatively by several genes. The dynamic regulatory mechanism of protein interaction network of cell cycle will be presented taking the budding yeast as a sample system. Based on the mathematical model developed by Chen et at. (MBC, 11,369), at first, the dynamic role of the feedback loops is investigated. Secondly, using a bifurcation diagram, dynamic analysis of the cell cycle regulation is illustrated. The bifurcation diagram is a kind of ‘dynamic road map’ with stable and unstable solutions. On the map, a stable solution denotes a ‘road’ attracting the state and an unstable solution ‘a repelling road’ The ‘START’ transition, the initiation of the cell cycle, occurs at the point where the dynamic road changes from a fixed point to an oscillatory solution. The 'FINISH' transition, the completion of a cell cycle, is returning back to the initial state. The bifurcation analysis for the mutants could be used uncovering the role of proteins in the cell cycle regulation network.

  • PDF

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

Energy and Exergy Analysis of Kalina Based Power and Cooling Combined Cycle (칼리나 사이클을 기반으로 하는 동력 및 냉동 복합 사이클의 에너지 및 엑서지 성능 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;KO, HYUNG JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.242-249
    • /
    • 2020
  • The Kalina cycle (KC) is considered as one of the most efficient systems for recovery of low grade heat. Recently, Kalina based power and cooling cogeneration cycles (KPCCCs) have been suggested and attracted much attention. This paper presents an energy and exergy analysis of a recently suggested KPCCC with flexible loads. The cycle consists of a KC (KCS-11) and an aqua-ammonia absorption refrigeration cycle. By adjusting the splitting ratios, the cycle can be operated with four modes of pure Kalina cycle, pure absorption cooling cycle, Kalina-cooling parallel cycle, and Kalina-cooling series cycle. The effects of system variables and the operating modes on the energetic and exergetic performances of the system are parametrically investigated. Results show that the system has great potential for efficient utilization of low-grade heat source by adjusting loads of power and cooling.

Development of Women's Cycle Wear Top with Improved Function (운동기능성 향상을 위한 여성용 사이클웨어 상의 개발)

  • Kwon, Chae-Ryung;Kim, Dong-Eun
    • Fashion & Textile Research Journal
    • /
    • v.21 no.1
    • /
    • pp.75-87
    • /
    • 2019
  • The purpose of the study was to suggest a cycle wear top jersey improved in mobility. The study developed a new cycle wear with improvement in dissatisfaction factors by planning design, pattern and the functionality of fabric. Considering the amount of sweat and the necessities of compression part, the basic material, the additional compression material, and the mesh material were arranged differently according to areas. The assessment of the developed cycle wear was composed of wearing comfort evaluation by female cyclist, photo analysis and garment pressure evaluation. The developed cycle wear was evaluated and compared with the current cycle wear. As a result of wearing comfort evaluation, the developed cycle wear was evaluated as better than the existing ones in all part, particularly in the areas of reflection tape and materials, partial pressure, pocket size, and prevention of loss. Photo analysis was in agreement with the appearance evaluation of the participants. As a result of garment pressure evaluation, the front neck part was more comfortable and the upper arm, abdomen, and waist area showed higher pressure, so it partially supported the body. This study has significant meaning for developing a new cycle wear top, protecting the body and improving the exercise effect.

Analysis of Heating and Desalination Cycle Using Low Temperature Seawater (저온 해수를 이용한 난방 및 담수화사이클 성능 해석)

  • Lee, H.S.;Lee, S.W.;Jung, D.H.;Moon, D.S.;Kim, H.J.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.301-306
    • /
    • 2011
  • The paper presents an analysis of the heating cycle and discusses a desalination cycle that uses lowtemperature seawater. The basic heating cycle model is the heat pump cycle, and seawater desalination is usually performed by the indirect freezing desalination method. The low temperature of the seawater (below $5^{\circ}C$) acts as the heat source of the evaporator. R-134a, R-1234yf, R-600a are used as working fluids. In the 2-stage compression cycle, the compressor's work decreased by about 15.6% from that in the 1-stage compression cycle. Further, the COP in the 2-stage cycle was 17.6% higher than that in the 1-stage cycle. In the indirect desalination cycle, the energy per unit fresh water productivity in the 2-stage cycle was 19.8% lower than that in the 1-stage cycle.

Development of Performance Analysis System (NOPAS) for Turbine Cycle of Nuclear Power Plant

  • Kim, Seong-Kun;Park, Kwang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.34-45
    • /
    • 2001
  • We have needs to develop a performance analysis system that can be used in domestic nuclear power plants to determine performance status of turbine cycle. We developed new NOPAS system to aid performance analysis of turbine cycle . Procedures of performance calculation are improved using several adaptations from standard calculation algorithms based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). Robustness in the performance analysis is increased by verification & validation scheme for measured input data. The system also provides useful aids for performance analysis such as graphic heat balance of turbine cycle and components, turbine expansion lines, automatic generation of analysis reports.

  • PDF

A Study on Optimized Design Decision of Building Service Systems Based on a Life-Cycle Cost Analysis - A Case Study on Community Center and Congress Hall of a Local Government - (LCC분석에 의한 설비시스템의 최적화 방안에 관한 연구 - G구 구민회관 및 구의회청사 사례 -)

  • 최성호;차병주;김상민;이승복
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.134-142
    • /
    • 2002
  • LCC (Life-Cycle Cost) analysis is a practical method and a guideline for evalua-ting the economic performance of building service systems. By using the LCC analysis, the most cost-effective design decision can be made, which has the lowest LCC during the project study period among the various design alternatives. The present case shows an example of appro-priate use of the LCC analysis, by demonstrating the procedures of decision making among at-tarnative building HVAC systems at community center and congress hall of a local government.