• Title/Summary/Keyword: Cyber-Physical Systems

Search Result 183, Processing Time 0.021 seconds

A Study on Improving Availability of Open Data by Location Intelligence (위치지능화를 통한 공공데이터의 활용성 향상에 관한 연구)

  • Yang, Sungchul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.93-107
    • /
    • 2019
  • The open data portal collects data created by public institutions and opens and shares them according to related laws. With the activation of the Fourth Industrial Revolution, all sectors of our society are demanding high quality data, but the data required by the industry has not been greatly utilized due to the lack of quantity and quality. Numerous data collected in the real world can be implemented in cyber physical systems to simulate real-world problems, and alternatives to various social issues can be found. There is a limit to being provided. Location intelligence is a technology that enables existing data to be represented in space, enabling new value creation through convergence. In this study, to present location intelligence of open data, we surveyed the status of location information by data in open data portal. As a result, about 60% of the surveyed data had location information and the representative type was address. Appeared. Therefore, by suggesting location intelligence of open data based on address and how to use it, this study aimed to suggest a way that open data can play a role in creating future social data-based industry and policy establishment.

Enhancing on Security Monitoring & Control Redundancy Facilities Config uration & Operation in the COVDI-19 Pandemic Environment (코로나19 환경에서 무중단 보안관제센터 구성 및 운영 강화 연구)

  • Kang, Dongyoon;Lee, Jeawoo;Park, Wonhyung
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • The purpose of this study was to keep the Security Control Center, which operates under a shift system, uninterrupted during the COVID-19 virus epidemic. Security facilities responding to cybersecurity threats are essential security facilities that must be operated 24 hours a day, 365 days a day in real time, and are critical to security operations and management. If security facilities such as infectious disease epidemic, system failure, and physical impact are closed or affected, they cannot respond to real-time cyberattacks and can be fatal to security issues. Recently, there have been cases in which security system facilities cannot be operated, such as the closure of facilities due to the COVID-19 virus epidemic and the availability of security systems due to the rainy season, and other cases need to be prepared. In this paper, we propose a plan to configure a security system facility as a multiplexing facility and operate it as an alternative in the event of a closed situation.

Research on Core Technology for Information Security Based on Artificial Intelligence (인공지능 기반 정보보호핵심원천기술 연구)

  • Sang-Jun Lee;MIN KYUNG IL;Nam Sang Do;LIM JOON SUNG;Keunhee Han;Hyun Wook Han
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.99-108
    • /
    • 2021
  • Recently, unexpected and more advanced cyber medical treat attacks are on the rise. However, in responding to various patterns of cyber medical threat attack, rule-based security methodologies such as physical blocking and replacement of medical devices have the limitations such as lack of the man-power and high cost. As a way to solve the problems, the medical community is also paying attention to artificial intelligence technology that enables security threat detection and prediction by self-learning the past abnormal behaviors. In this study, there has collecting and learning the medical information data from integrated Medical-Information-Systems of the medical center and introduce the research methodology which is to develop the AI-based Net-Working Behavior Adaptive Information data. By doing this study, we will introduce all technological matters of rule-based security programs and discuss strategies to activate artificial intelligence technology in the medical information business with the various restrictions.

Development of a Smart Oriental Medical System Using Security Functions

  • Hong, YouSik;Yoon, Eun-Jun;Heo, Nojeong;Kim, Eun-Ju;Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.268-275
    • /
    • 2014
  • In future, hospitals are expected to automatically issue remote transcriptions. Many general hospitals are planning to encrypt their medical database to secure personal information as mandated by law. The electronic medical record system, picture archiving communication system, and the clinical data warehouse, amongst others, are the preferred targets for which stronger security is planned. In the near future, medical systems can be assumed to be automated and connected to remote locations, such as rural areas, and islands. Connecting patients who are in remote locations to medical complexes that are usually based in larger cities requires not only automatic processing, but also a certain amount of security in terms of medical data that is of a sensitive and critical nature. Unauthorized access to patients' transcription data could result in the data being modified, with possible lethal results. Hence, personal and sensitive data on telemedicine and medical information systems should be encrypted to protect patients from these risks. Login passwords, personal identification information, and biological information should similarly be protected in a systematic way. This paper proposes the use of electronic acupuncture with a built-in multi-pad, which has the advantage of being able to establish a patient's physical condition, while simultaneously treating the patient with acupuncture. This system implements a sensing pad, amplifier, a small signal drive circuit, and a digital signal processing system, while the use of a built-in fuzzy technique and a control algorithm have been proposed for performing analyses.

A Study on the Factors Influencing the Competitiveness of Small and Medium Companies Applied with Smart Factory System (스마트공장 시스템 구축이 중소기업 경쟁력에 미치는 요인에 관한 연구)

  • Young-Hwan Choi;Sang Hyun Choi
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.95-113
    • /
    • 2017
  • The advent of information communication technology or the Fourth Industrial Revolution facilitated the fusion of equipment and management systems, such as Manufacturing Execution System, Enterprise Resource Planning, and Product Lifecycle Management, in the successful implementation of smart factories. The government supports the early adoption of these systems in small and medium companies to enhance their global competitiveness in producing products that can be recognized in a dramatically changing manufacturing environment. This study introduces smart factories to improve company competitiveness and address influences from the government assistance, CEO leadership, external consultancy, and organizational participation. We analyzed 101 results received from the questionnaires circulated to small- and medium-sized manufacturing companies. Given a successful smart factory implementation, company competitiveness is the factor that mostly influences organizational participation, government assistance, external consultancy, and CEO leadership. This study suggests several perspectives to implement a smart factory, which is the most important aspect of company competitiveness.

Determination of the Pallet Quantity Using Simulation in the FMS for Aircraft Parts (시뮬레이션 기법을 이용한 항공기 부품 가공 유연생산시스템의 팔레트 수량 결정)

  • Kim, Deok Hyun;Lee, In Su;Cha, Chun Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.59-69
    • /
    • 2018
  • This study deals with the case study on the pallet quantity determination problem for the flexible manufacturing system producing 32 different types of aircraft wing ribs which are major structures of an aircraft wings. A Korean company has constructed the WFMS (wing rib flexible manufacturing system) that is composed of several automated equipments such as the 5-axis machining centers, the RGV (rail guided vehicles)s, the AS/RS (automated storage and retrieval system), the loading/unloading stations, and so on. Pallets play a critical role in the WFMS to maintain high system utilization and continuous work flow between 5-axis machining machines and automated material handling devices. The discrete event simulation method is used to evaluate the performance of the WFMS under various pallet mix alternatives for wing rib manufacturing processes. Four performance measures including system utilization, throughput, lead-time and work in process inventory level are investigated to determine the best pallet mix alternative. The best pallet mix identified by the simulation study is adopted in setting up and operating a real Korean aircraft parts manufacturing shop. By comparing the real WFMS's performances with those of the simulation study, we discussed the cause of performance difference observed and the necessity of developing the CPS (cyber physical system).

Development of a Cyber-physical System - A Virtual Autonomous Excavator (사이버 물리적 시스템의 개발 - 가상 자율적 굴삭기)

  • Park, Hong-Seok;Le, Ngoc-Tran
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.298-311
    • /
    • 2015
  • Nowadays, automatic digging operation of an excavator is a big challenge due to the complexity of digging environment, the hardness of soil and buried obstacles into the ground. In order to achieve the maximum soil bucket volume, this paper introduces a novel engineering model that was developed as a virtual excavator in the design phase. Through this model, the designs of mechanical and control systems for autonomous excavator are executed and modified easily before developing in real testbed. Based on a concept of an autonomous excavation, a mechanical system of excavator was first designed in SOLIDWORKS, and a soil model also was modeled by finite-element analysis in ANSYS, both modeled models were then exported to ADAMS environment to investigate the digging behavior through virtual simulation. An intelligent control strategy was generated in MATLAB/Simulink to control the excavator operation. The simulation results were demonstrated by effectiveness of the proposed excavator robot in testing scenarios with many soil types and obstacles.

Technology Trend of Construction Additive Manufacturing (건축 스케일 적층제조 기술동향)

  • Park, Jinsu;Kim, Kyungteak;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.528-538
    • /
    • 2019
  • The transition from "More-of-Less" markets (economies of scale) to "Less-of-More" markets (economies of scope) is supported by advances of disruptive manufacturing and reconfigurable-supply-chain management technologies. With the prevalence of cyber-physical manufacturing systems, additive manufacturing technology is of great impact on industry, the economy, and society. Traditionally, backbone structures are built via bottom-up manufacturing with either pre-fabricated building blocks such as bricks or with layer-by-layer concrete casting such as climbing form-work casting. In both cases, the design selection is limited by form-work design and cost. Accordingly, the tool-less building of architecture with high design freedom is attractive. In the present study, we review the technological trends of additive manufacturing for construction-scale additive manufacturing in particular. The rapid tooling of patterns or molds and rapid manufacturing of construction parts or whole structures is extensively explored through uncertainties from technology. The future regulation still has drawbacks in the adoption of additive manufacturing in construction industries.

User Mobility Model Based Computation Offloading Decision for Mobile Cloud

  • Lee, Kilho;Shin, Insik
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 2015
  • The last decade has seen a rapid growth in the use of mobile devices all over the world. With an increasing use of mobile devices, mobile applications are becoming more diverse and complex, demanding more computational resources. However, mobile devices are typically resource-limited (i.e., a slower-speed CPU, a smaller memory) due to a variety of reasons. Mobile users will be capable of running applications with heavy computation if they can offload some of their computations to other places, such as a desktop or server machines. However, mobile users are typically subject to dynamically changing network environments, particularly, due to user mobility. This makes it hard to choose good offloading decisions in mobile environments. In general, users' mobility can provide some hints for upcoming changes to network environments. Motivated by this, we propose a mobility model of each individual user taking advantage of the regularity of his/her mobility pattern, and develop an offloading decision-making technique based on the mobility model. We evaluate our technique through trace-based simulation with real log data traces from 14 Android users. Our evaluation results show that the proposed technique can help boost the performance of mobile devices in terms of response time and energy consumption, when users are highly mobile.

Applications and Strategies on Defense Acquisition based CPS & IoT Technology (사이버물리시스템(CPS)과 사물인터넷(loT) 기술의 군사적 활용방안 및 추진전략)

  • Kye, J.E.;Park, P.J.;Kim, W.T.;Lim, C.D.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.4
    • /
    • pp.92-101
    • /
    • 2015
  • 미래 전장은 정보 지식 기반의 첨단 전력체계를 확충하기 위해 향후 전력구조를 통합, 지휘통제통신(C4I) 체계와 생존성과 통합성이 향상된 전장의 네트워크중심전(NCW) 수행능력을 향상시킬 것이다. 사이버물리시스템(Cyber-Physical Systems: CPS)은 함정전투체계에 적용되고 있는 DDS를 포함하여 국방 M&S의 근간인 Live, Virture, Constructive(L-V-C) 체계의 큰 축을 형성하고 있다. 사물인터넷(Internet of Things: IoT) 기술은 센서네트워크, 통신, Radio Frequency Identification(RFID), Ubiquitous Sensor Network(USN), Machine to Machine(M2M), D2D 기술 및 상황인지, 지능서비스를 위한 정보수집/가공/융합/분석/예측기술을 포괄적으로 포함한 기술로서 미래산업을 이끌어 갈 차세대 선도 기술이며, 특히 군사적으로도 감시정찰 센서네트워크(USN), 견마형로봇, 경전투로봇과 무인기 기술 및 전술정보통신망체계(TICN) 등 첨단 통신네트워크 기술의 전력화 추세는 IoT 기술의 적용영역을 넓혀주고 있다. 감시정찰체계(Sensor)에서는 감시정찰 분야 영상정보 처리, 표적탐지 등과 관련된 IoT 기술 소요와 지휘통제통신(C4I) 체계의 상호운용성, 데이터링크, 지능형 통신체계 등 C4I 관련 IoT 기술 소요 및 타격체계(Shooter)의 내장형 SW 등 유 무인 무기체계 관련 IoT 기술의 소요가 증대될 것으로 예상된다. 본고는 CPS 및 IoT 기술의 군사적 활용방안 및 획득전략에 대한 적용기술 및 발전방향을 살펴본다.

  • PDF