• Title/Summary/Keyword: Cyanobacteria Bloom

Search Result 105, Processing Time 0.023 seconds

Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock (토착 남세균 림노트릭스 속 KNUA012 균주의 바이오연료 원료로서의 특성 연구)

  • Hong, Ji Won;Jo, Seung-Woo;Kim, Oh Hong;Jeong, Mi Rang;Kim, Hyeon;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.460-467
    • /
    • 2016
  • A filamentous cyanobacterium, Limnothrix sp. KNUA012, was axenically isolated from a freshwater bloom sample in Lake Hapcheon, Hapcheon-gun, Gyeongsangnam-do, Korea. Its morphological and molecular characteristics led to identification of the isolate as a member of the genus Limnothrix. Maximal growth was attained when the culture was incubated at 25℃. Analysis of its lipid composition revealed that strain KNUA012 could autotrophically synthesize alkanes, such as pentadecane (C15H32) and heptadecane (C17H36), which can be directly used as fuel without requiring a transesterification step. Two genes involved in alkane biosynthesis-an acyl-acyl carrier protein reductase and an aldehyde decarbonylase-were present in this cyanobacterium. Some common algal biodiesel constituents-myristoleic acid (C14:1), palmitic acid (C16:0), and palmitoleic acid (C16:1)-were produced by strain KNUA012 as its major fatty acids. A proximate analysis showed that the volatile matter content was 86.0% and an ultimate analysis indicated that the higher heating value was 19.8 MJ kg−1. The isolate also autotrophically produced 21.4 mg g−1 phycocyanin-a high-value antioxidant compound. Therefore, Limnothrix sp. KNUA012 appears to show promise for application in cost-effective production of microalga-based biofuels and biomass feedstock over crop plants.

Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea (강화도 장화리 갯벌에서 저서미세조류의 계절적 분포 및 일차 생산력)

  • Yoo, Man-Ho;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.8-18
    • /
    • 2005
  • We studied seasonal distribution of the microphytobenthos and their primary production with $C^{14}$ method and carried out pigment analysis with HPLC in an estuarine mudflat of the Ganghwa Island, Korea from May 2002 to April 2004. The abundances of microphytobenthos were higher at the middle than upper part and lower part of intertidal flat. Abundances of microphytobenthos ranged from $2.3{\times}10^5\;cells\;cm^{-2}$ to $140.9{\times}10^5\;cells cm^{-2}$. The bloom of microphytobenthos was observed in the early spring and then it decreased from spring to summer and autumn. The pennate diatom was a predominated group among the microphytobenthos in this area. The dominant species were Paralia sulcata, Cylindrotheca closterium and Nitzschia sp.. Nitzschia sp. and Cylindrotheca closterium were predominant in February. The results of pigment analysis suggest the presence of diatoms, euglenophytes, chlorophytes, cyanobacteria, cryptophytes, chrysophytes, prymnesiophytes, dinoflagellates and prasinophytes. The biomass of microphytobenthos ranged from 1.18 to 34.25 mg chl-a $m^{-2}$, with a mean of 7.60 mg chl-a $m^{-2}$. The mean ratio of Fuco/Chl a was 0.7 which indicates that most of biomasses of microphytobenthos were due to diatoms. The ratios of Chl b/Chl a ranged from 0 to 0.82(with a mean of 0.17), implying that euglenophytes and chlorophytes lived together in special period seasonally. Temporal variation of primary production ranged from 4.2 to 113.0 $mgC{\cdot}m^{-2}{\cdot}hr^{-1}$(mean value was 33.9 $mgC{\cdot}m^{-2}{\cdot}hr^{-1}$ and initial slope$({\alpha})$ was measured from 0.002-0.005$(mgC\;mgchl-a^{-1}\;hr^{-1}){\cdot}({\mu}E\;m^{-2}\;s^{-1})^{-1}$. Assimilation number$(P_m)$ was in the range of 0.50-1.32 $mgC{\cdot}mgChl-a{\cdot}hr^{-1}$ and daily primary production ranged from 20.9 to 678.1 $mgC{\cdot}m^{-2}{\cdot}d^{-1}$(mean value was 206.72 $mgC{\cdot}m^{-2}{\cdot}^{-1}$).

Seasonal Variations of Environmental Factors and Distribution of Anabaena cylindrica Growth-Inhibiting Bacteria in the Lower Daechung Reservoir (대청호 하류에서 환경요인과 Anabaena cylindrica 생장억제세균의 계절별 분포 변화)

  • Lee, Jung-Ho;Kim, Chul-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.128-135
    • /
    • 2000
  • The authors surveyed the seasonal variations of environmental factors, the distributions of heterotrophic bacteria and Anabaena cylindrica growth-inhibiting bacteria at each water layer in Daechung Reservoir to verify the role of bacteria during the extinction of bloom. Average water depth at site 1, 2, and 3 were 25.5 m, 15.0 m and 12.3 m, respectively. Water temperature showed a typical pattern seasonally. The variation of DO was relatively inverse proportional to that of water temperature, although it was irregular during summer time. DO decreased gradually to early May, fluctuated sharply after then, and followed by gradual increasement after middle of September. This variation pattern was notable at surface layer. There was remarkable difference in DO concentraion between surface layer and the other water layers during the period in which DO irregulary varied. The variation range of chlorophyll-a concentraion at surface layer in summer time was broad, and it was relatively high when DO was high. The population size of heterotrophic bacteria was high from Spring to Autumn, an declined after September when the water temperature droped rapidly. Especially this variation pattern was prominent at the surface layer. Bacteria that inhibit the growth of A. cylindrica was almost not detected by June, and its distribution increased in July. Afterward, it showed different variation pattern between each site. The distribution of A. cylindrica growth-inhibiting bacteria was higher at the middle and bottom layer than the surface layer in July and October, when it was larger at all sites for the study period. This result suggests that the antagonistic bacteria exhibit higher activity when host activity drops. These results also suggest that natural water bacteria control the distirbution of cyanobacteria, especially its activity as controller is remarkable when cyanobacterial growth declines.

  • PDF

Feeding Behavior of Crustaceans (Cladocera, Copepoda and Ostracoda): Food Selection Measured by Stable Isotope Analysis Using R Package SIAR in Mesocosm Experiment (메소코즘을 이용한 지각류, 요각류 및 패충류의 섭식 성향 분석; 탄소, 질소 안정동위원소비의 믹싱모델 (R package SIAR)을 이용한 정량 분석)

  • Chang, Kwang-Hyeon;Seo, Dong-Il;Go, Soon-Mi;Sakamoto, Masaki;Nam, Gui-Sook;Choi, Jong-Yun;Kim, Min-Seob;Jeong, Kwang-Seok;La, Geung-Hwan;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.279-288
    • /
    • 2016
  • Stable Isotope Analysis(SIA) of carbon and nitrogen is useful tool for the understanding functional roles of target organisms in biological interactions in the food web. Recently, mixing model based on SIA is frequently used to determine which of the potential food sources predominantly assimilated by consumers, however, application of model is often limited and difficult for non-expert users of software. In the present study, we suggest easy manual of R software and package SIAR with example data regarding selective feeding of crustaceans dominated freshwater zooplankton community. We collected SIA data from the experimental mesocosms set up at the littoral area of eutrophic Chodae Reservoir, and analyzed the dominant crustacean species main food sources among small sized particulate organic matters (POM, <$50{\mu}m$), large sized POM (>$50{\mu}m$), and attached POM using mixing model. From the results obtained by SIAR model, Daphnia galeata and Ostracoda mainly consumed small sized POM while Simocephalus vetulus consumed both small and large sized POM simultaneously. Copepods collected from the reservoir showed no preferences on various food items, but in the mesocosm tanks, main food sources for the copepods was attached POM rather than planktonic preys including rotifers. The results have suggested that their roles as grazers in food web of eutrophicated reservoirs are different, and S. vetulus is more efficient grazer on wide range of food items such as large colony of phytoplankton and cyanobacteria during water bloom period.

A Study on the Dynamics of Dissolved Organic Matter Associated with Ambient Biophysicochemical Factors in the Sediment Control Dam (Lake Youngju) (영주댐 유사조절지 상류의 용존유기물 (Dissolved Organic Matter) 특성과 물리·화학 및 생물학적 환경 요인과의 연관성 연구)

  • Oh, Hye-Ji;Kim, Dokyun;Choi, Jisoo;Chae, Yeon-Ji;Oh, Jong Min;Shin, Kyung-Hoon;Choi, Kwangsoon;Kim, Dong-Kyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.346-362
    • /
    • 2021
  • A sediment control dam is an artificial structure built to prolong sedimentation in the main dam by reducing the inflow of suspended solids. These dams can affect changes in dissolved organic matter (DOM) in the water body by changing the river flow regime. The main DOM component for Yeongju Dam sediment control of the Naeseongcheon River was analyzed through 3D excitation-emission matrix (EEM) and parallel factor (PARAFAC) analyses. As a result, four humic-like components (C1~C3, C5), and three proteins, tryptophan-like components (C2, C6~C7) were detected. Among DOM components, humic-like components (autochthonous: C1, allochthonous: C2~C3) were found to be dominant during the sampling period. The total amount of DOM components and the composition ratio of each component did not show a difference for each depth according to the amount of available light (100%, 12%, and 1%). Throughout the study period, the allochthonous organic matter was continuously decomposing and converting into autochthonous organic matter; the DOM indices (fluorescence index, humification index, and freshness index) indicated the dominance of autochthonous organic matter in the river. Considering the relative abundance of cyanobacteria and that the number of bacteria cells and rotifers increased as autochthonous organic matter increased, it was suggested that the algal bloom and consequent activation of the microbial food web was affected by the composition of DOM in the water body. Research on DOM characteristics is important not only for water quality management but also for understanding the cycling of matter through microbial food web activity.