DOI QR코드

DOI QR Code

Feeding Behavior of Crustaceans (Cladocera, Copepoda and Ostracoda): Food Selection Measured by Stable Isotope Analysis Using R Package SIAR in Mesocosm Experiment

메소코즘을 이용한 지각류, 요각류 및 패충류의 섭식 성향 분석; 탄소, 질소 안정동위원소비의 믹싱모델 (R package SIAR)을 이용한 정량 분석

  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Seo, Dong-Il (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Go, Soon-Mi (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Sakamoto, Masaki (Department of Environmental Engineering, Toyama Prefectural University) ;
  • Nam, Gui-Sook (Rural Research Institute, Korea Rural Community Corporation) ;
  • Choi, Jong-Yun (National Institute of Ecology) ;
  • Kim, Min-Seob (National Institute of Environmental Research, Environment Research Complex) ;
  • Jeong, Kwang-Seok (Department of Nursing Science, Dongju College) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National Univeristy) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National Univeristy)
  • 장광현 (경희대학교환경학 및 환경공학과) ;
  • 서동일 (경희대학교환경학 및 환경공학과) ;
  • 고순미 (경희대학교환경학 및 환경공학과) ;
  • ;
  • 남귀숙 (농어촌공사 농어촌연구원) ;
  • 최종윤 (국립생태원) ;
  • 김민섭 (국립환경과학원) ;
  • 정광석 (동주대학교 간호학과) ;
  • 나긍환 (순천대학교 환경교육과) ;
  • 김현우 (순천대학교 환경교육과)
  • Received : 2016.09.27
  • Accepted : 2016.12.12
  • Published : 2016.12.31

Abstract

Stable Isotope Analysis(SIA) of carbon and nitrogen is useful tool for the understanding functional roles of target organisms in biological interactions in the food web. Recently, mixing model based on SIA is frequently used to determine which of the potential food sources predominantly assimilated by consumers, however, application of model is often limited and difficult for non-expert users of software. In the present study, we suggest easy manual of R software and package SIAR with example data regarding selective feeding of crustaceans dominated freshwater zooplankton community. We collected SIA data from the experimental mesocosms set up at the littoral area of eutrophic Chodae Reservoir, and analyzed the dominant crustacean species main food sources among small sized particulate organic matters (POM, <$50{\mu}m$), large sized POM (>$50{\mu}m$), and attached POM using mixing model. From the results obtained by SIAR model, Daphnia galeata and Ostracoda mainly consumed small sized POM while Simocephalus vetulus consumed both small and large sized POM simultaneously. Copepods collected from the reservoir showed no preferences on various food items, but in the mesocosm tanks, main food sources for the copepods was attached POM rather than planktonic preys including rotifers. The results have suggested that their roles as grazers in food web of eutrophicated reservoirs are different, and S. vetulus is more efficient grazer on wide range of food items such as large colony of phytoplankton and cyanobacteria during water bloom period.

탄소와 질소 안정동위원소비를 이용한 먹이망 구조 해석 기법은 수생태계 연구에서 폭 넓게 활용되고 있으며, 먹이원의 정량적 기여율을 분석하는 믹싱모델에 적용될 수 있다. 본 연구에서는 Bayesian 모델을 이용한 믹싱모델의 적용이 가능한 통계 패키지(R, SIAR package)의 사용방법을 제시하고, 사용 예로 저수지 및 메소코즘 배양조에서의 동물플랑크톤과 먹이원의 탄소, 질소 안정동위원소비를 이용한 섭식 성향 분석 방법 및 결과를 제시하였다. 분석 결과, 국내 저수지 및 대형하천 등에서 주로 우점하는 Daphnia galeata는 소형의 POM (<$50{\mu}m$)을 주로 섭식하는 것으로 나타나, 부영양화된 환경에서 녹조 발생시 먹이로의 활용이 용이하지 않은 것으로 나타났다. 논 생태계 등에서 빈번히 출현하는 패충류의 경우 D. galeata와 유사한 섭식 성향을 나타내었다. 반면 습지 등에서 주로 출현하는 Simocephalus vetulus의 경우, 부착성 POM이 아닌 부유성 POM을 주로 섭식하며 Microcystis를 포함하는 대형의 POM (>$50{\mu}m$)을 섭식하는 것으로 분석되었다.

Keywords

References

  1. berson, M.J.R., S.G. Bolam and R.G. Hughes. 2016. The effect of sewage pollution on the feeding behaviour and diet of Hediste (Nereis diversicolor (O.F. Muller, 1776)) in three estuaries in south-east England, with implications for saltmarsh erosion. Marine Pollution Bulletin 105: 150-160. https://doi.org/10.1016/j.marpolbul.2016.02.033
  2. Bicknell, A.W.J., M.E. Knight, D.T. Bilton, M. Campbell, J.B. Reid, J. Newton and S.C. Votier. 2014. Intercolony movement of pre-breeding seabirds over oceanic scales: implications of cryptic age-classes for conservation and metapopulation dynamics. Diversity and Distributions 20: 160-168. https://doi.org/10.1111/ddi.12137
  3. Chang, K.H. and H. Doi. 2011. Water resource management, food web and stable isotope. Water for Future 44: 46-51. (in Korean)
  4. Choi, J.Y., G.H. La, K.S. Jeong, S.K. Kim, K.H. Chang and G.J. Joo. 2012. Classification by zooplankton inhabit character and freshwater microbial food web: importance of epiphytic zooplankton as energy source for high-level predator. Korean Journal of Limnology 45: 444-452. https://doi.org/10.11614/KSL.2012.45.4.444
  5. Choi, J.Y., S.K. Kim, S.W. Hong, K.S. Jeong, G.H. La and G.J. Joo. 2013. Zooplankton community distribution and food web structure in small reservoirs: influence of land uses around reservoirs and littoral aquatic plant on zooplankton. Korean Journal of Ecology and Environment 46: 332-342. (in Korean)
  6. Colborne, S.F., S.A. Rush, G. Paterson, T.B. Johnson, B.F. Lantry and A.T. Fisk. 2016. Estimates of lake trout (Salvelinus namaycush) diet in Lake Ontario using two and three isotope mixing models. Journal of Great Lakes Research 42: 695-702. https://doi.org/10.1016/j.jglr.2016.03.010
  7. Ekvall, M.K., P. Urrutia-Cordero and L.A. Hansson. 2014. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation. PLoS One 9: e112956. https://doi.org/10.1371/journal.pone.0112956
  8. Gal, J.K., M.S. Kim, Y.J. Lee, J. Seo and K.H. Shin. 2012. Foodweb of aquatic ecosystem within the Tamjin River through the determination of carbon and nitrogen stable isotope ratios. Korean Journal of Limnology 45: 242-251. (in Korean)
  9. Hundey, E.J., S.D. Russell, F.J. Longstaffe and K.A. Moser. 2016. Agriculture causes nitrate fertilization of remote alpine lakes. Nature Communications 7: 10571 doi:10.1038/ncomms10571.
  10. Inger, R., A. Jackson, A. Parnell and S. Bearhop. 2010. SIAR V4 (Stable Isotope Analysis in R): an ecologist's guide. Available at: http://www.tcd.ie/Zoology/research/research/theoretical>/siar/SIAR_For_Ecologist.pdf>
  11. Jansen, O.E., L. Michel, G. Lepoint, K. Das, A.S. Couperus and P.J.H. Reijnders. 2013. Diet of harbor porpoises along the Dutch coast: a combined stable isotope and stomach contents approach. Marine Mammal Science 29: E295-E311. https://doi.org/10.1111/j.1748-7692.2012.00621.x
  12. Kang, J.I., J. Kim and S.D. Lee. 2011. Studies on stream ecosystem in the Bukhan River using stable isotopes. Journal of Wetlands Research 13: 515-522. (in Korean)
  13. Kang, S., B. Choi, Y. Han and K.H. Shin. 2016. Ecological importance of benthic microalgae in the intertidal mud flat of Yeongheung Island; application of stable isotope analysis (SIA). Korean Journal of Ecology and Environment 49: 80-88. (in Korean) https://doi.org/10.11614/KSL.2016.49.2.080
  14. Kim, J., B. Kim, M. Kim and K. Shin. 2015. Evaluation of organic matter sources of phytoplankton in Paldang Reservoir using stable isotope analysis. Journal of Korean Society on Water Environment 31: 159-165. (in Korean) https://doi.org/10.15681/KSWE.2015.31.2.159
  15. Kim, M.S., J.Y. Hwang, O.S. Kwon and W.S. Lee. 2013. Analytical methodology of stable isotopes ratios: sample pretreatment, analysis and application. Korean Journal of Ecology and Environment 46: 471-487. (in Korean)
  16. Kim, M.S., W.S. Lee, K. Suresh Kumar, K.H. Shin, W. Robarge, M. Kim and S.R. Lee. 2016. Effects of HCL pretreatment, drying, and storage on the stable isotope ratios of soil and sediment samples. Rapid Communications in Mass Spectrometry 30: 1567-1575. https://doi.org/10.1002/rcm.7600
  17. La, G.H., E.J. Han, D.H. Won, J.H. Kim, J.R. Jeong and H.W. Kim. 2015. Life History and morphological responses of Daphnia similis against chemical compounds excuded by various cohabiting animals and Triops longicaudatus in the rice paddy ecosystem. Korean Journal of Ecology and Environment 48: 272-279. https://doi.org/10.11614/KSL.2015.48.4.272
  18. Lee, J., J. Kim, Y. Jung and B. Kim. 2010. Isotophic differences among zooplankton taxa and seasonal variation of zooplankton community coexisting with Microcystis. Korean Journal of Limnology 43: 1-10. (in Korean)
  19. Lee, Y.J., B.K. Jeong, Y.S. Shin, S.H. Kim and K.H. Shin. 2013. Determination of the origin of particulate organic matter at the estuary of Youngsan River using stable isotope ratios (${\delta}^{13}C$, ${\delta}^{15}N$). Korean Journal of Ecology and Environment 46: 175-184. (in Korean)
  20. Parnell, A.C., R. Inger, S. Bearhop and A.L. Jackson (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5: e9672. https://doi.org/10.1371/journal.pone.0009672
  21. Peterson, B.J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293-320. https://doi.org/10.1146/annurev.es.18.110187.001453
  22. Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, J.W. Moore, A.C. Parnell, B.X. Semmens and E.J. Ward. 2014. Best practices for use of stable isotope mixing models in foodweb studies. Canadian Journal of Zoology 92: 823-835. https://doi.org/10.1139/cjz-2014-0127
  23. R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0 [http://www.R-project.org/].
  24. Sakamoto, M., T. Nagata, J.Y. Ha, S. Kimijima, T. Hanazato and K.H. Chang. 2015. Inducible defenses as factor determining trophic pathways in a food web. Hydrobiologia 743: 15-25. https://doi.org/10.1007/s10750-014-1999-x
  25. Smith, J.A., D. Mazumder, I.M. Suthers and M.D. Taylor. 2013. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4: 612-618. https://doi.org/10.1111/2041-210X.12048
  26. Syvaranta, J., P. Hogmander, T. Keskinen, J. Karjalainen and R.I. Jones. 2011. Altered energy flow pathways in a lake ecosystem following manipulation of fish community structure. Aquatic Sciences 73: 79-89. https://doi.org/10.1007/s00027-010-0161-8
  27. Vander Zanden, M.J. and J.B. Rasmussen. 2001. Variation in ${\delta}^{15}N$ and ${\delta}^{13}C$ trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061-2066. https://doi.org/10.4319/lo.2001.46.8.2061
  28. Xue, D., B. De Baets, O. Van Cleemput, C. Hennessy, M. Berglund and P. Boeckx. 2012. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water. Environmental Pollution 161: 43-49. https://doi.org/10.1016/j.envpol.2011.09.033
  29. Yoon, J.D., S.H. Park, K.H. Chang, J.Y. Choi, G.J. Joo, G.S. Nam, J. Yoon and M.H. Jang. 2015. Characteristics of fish founa in the lower Geum River and identification of trophic guilds using stable isotope analysis. Korean Journal of Environmental Biology 33: 34-44. (in Korean) https://doi.org/10.11626/KJEB.2015.33.1.034
  30. Yu, J., Y. Li, X. Liu, K. Li, F. Chen, R. Gulati and Z. Liu. 2013. The fate of cyanobacterial detritus in the food web of Lake Taihu: a mesocosm study using $^{13}C$ and $^{15}N$ labeling. Hydrobiologia 710: 39-46. https://doi.org/10.1007/s10750-012-1205-y