• Title/Summary/Keyword: Cutting-Simulation

Search Result 463, Processing Time 0.026 seconds

A Study on the Microcutting for Configuration of Tools using Molecular Dynamics (분자동역학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구)

  • Moon, Chan-Hong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.135-142
    • /
    • 1995
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite element method is impossible for a very small focused region and mesh size. As the alternative method, Molecular Dynamics or Statics is suggested and accepted in the field of microcutting, indentation and crack propagation. In this paper using Molecular Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF

Manufacturing of Three-dimensional Micro Structure Using Proton Beam (양성자 빔을 이용한 3차원 마이크로 구조물 가공)

  • Lee, Seonggyu;Kwon, Won Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • The diameter of a proton beam emanating from the MC-50 cyclotron is about 2-3 mm with Gaussian distribution. This widely irradiated proton beam is not suitable for semiconductor etching, precise positioning, and micromachining, which require a small spot. In this study, a beam cutting method using a microhole is proposed as an economical alternative. We produced a microhole with aspect ratio, average diameter, and thickness of 428, $21{\mu}m$, and 9 mm, respectively, for cutting the proton beam. By using this high-aspect-ratio microhole, we conducted machinability tests on microstructures with sizes of tens of ${\mu}m$. Additionally, the results of simulation using GEANT4 and those of the actual experiment were compared and analyzed. The outcome confirmed the possibility of implementing a micro process technology for the fabrication of three-dimensional microstructures of 20 micron units using the MC-50 cyclotron with the microhole.

Numerical Simulation on the Steel Plate Cutting Performances of Bent-Shaped Charge Holder Blasting (드로잉 가공 성형폭약용기의 강판절단성능에 관한 수치해석적 연구)

  • Min, Gyeong-Jo;Park, Hoon;Oh, Se-Wook;Park, Se-Woong;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Locally damaged structures caused by earthquake or extraordinary external forces have been required to rapidly be dismantled because of its possibility of additional collapses. Particularly, steel frame structures were demolished by the shaped charge blasting method. Recently a research suggested a shape charge blasting technique which uses bent-shaped charge holder of copper plate and emulsion explosive charge to cut thick steel plates. This study simulated the cutting performance of the bent-shaped charge holder with considering types of explosives, thickness of copper liner and stand-off distances using LS-DYNA software. The shape charge blasting test of a 25mm thickness steel plate were used to calibrate the input parameters of the numerical models. The penetration depth and penetration width were analysed with different types of explosives, thickness of copper liner and stand-off distances.

Modeling of a Small Group Scale TMR Plant for Beef Cattle and Dairy Farm in Korea(I) - Development of TMR Plant Model - (한우 및 낙농 단지용 소형 TMR 플랜트 모델 개발(I))

  • Ha, Yu-Shin;Hong, Dong-Hyuck;Park, Kyung-Kyoo
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.342-350
    • /
    • 2009
  • Currently TMR feed produced in commercial plant is one of the major source to feed cattle for both beef and dairy farm. However, because of lack of cutting and mixing system for utilizing domestic produced firmly baled round roughage in commercial TMR plant, these commercial TMR feed can not satisfy to farmers both in quality and price points of view. In order to solve these problems, a farm group size TMR plant model was developed in this study. The model plant was consist of round bale receiving and cutting system, pneumatic conveying system for transfer the roughage which was cut at the cutter to TMR mixer through pneumatic conveyor, TMR mixer enable to soften the stiff rice strew and to mix with other ingredients, finished feed bin which can be transfer to either packing system or individual farm, packing system by tycon bag which contains 400 kg unit and bulk unloading system to individual farmer. Also, a simulation model ARENA was applied to the model system in order to evaluate and check the production rate in each unit process and operation rate of total system and to find out if there are any clogged unit system obstructing the smooth flow of the total process flow. Processing cycle for produce one batch of the model plant was less than 30 minutes. Thus, it will take less than four hours for producing 16 tons per day equivalent to 1,000 beef cattle's daily feed.

Individualism/Collectivism and Attribution Style in Dangerous Driving Situations: A Driving Simulation Study (위험 운전상황에서 운전자의 문화성향에 따른 귀인양식의 차이: 운전 시뮬레이션 연구)

  • Jaesik Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.19 no.3
    • /
    • pp.367-388
    • /
    • 2013
  • This study examined how drivers of different cultural orientations(individualism vs. collectivism) attribute the cause(dispositional vs. situational) of four simulated driving situations which were varied in types(cutting-in and sudden-stop by the other driver) and differential emphasis on other the other driver's driving attitude or situational factor. The results showed the followings. First, the drivers generally showed higher attribution scores on the dispositional factor than the situational factor, except for the 'sudden-stop: situation emphasis' scenario condition. Second, when drivers' cultural orientation and attribution styles were considered together, it was found that, except for the 'cutting-in: disposition emphasis' scenario condition. the drivers of collectivism tended to attribute more to situational factor than the drivers of individualism, In contrast, the drivers of individualism showed higher attribution scores on dispositional factor than situational factor in all driving scenario conditions. Implication and suggestion were discussed.

  • PDF

BIM-Based Generation of Free-form Building Panelization Model (BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구)

  • Kim, Yang-Gil;Lee, Yun-Gu;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

The Characteristics of the Milling Tool Deflection According to the Variation of Helix Angle (헬릭스각의 변화에 따른 밀링공구의 변위 특성 연구)

  • Maeng, Min-Jae;Chung, Joon-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.860-866
    • /
    • 2004
  • In the end milling operation the deflection of the cutter is an important factor affecting the accuracy of machining, with implications on the selection of cutting parameters and economics of the operation. Several studies were devoted to the end mill deflection and its effects, notably, providing a useful insight into the problem. Although the deflection affects adversely the accuracy, the flexibility of the cutter is beneficial in attenuating the overload in a sudden transient situation, as well as in attenuating chatter. The deflection of the end mill was studied both experimentally with strain gauge, tool dynamometer, laser measuring apparatus and on a finite element model of the cutting using ANSYS software. The deflection of machining tool with various helix angles was studied with FEM simulation and experiment. ANSYS analysis performed on the finite element model of the end mill provides deflection results which agree within 15.0% with the experimental ones.

Supply Route Analysis and Performance Evaluation of Dental High-Speed Air Turbine Handpiece (치과용 고속 에어터빈 핸드피스의 공급관로 분석 및 성능평가)

  • Han, Myung-Chul;Kim, Jung-Kwan;Choi, Myoung-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.80-88
    • /
    • 2011
  • The dental high-speed air turbine handpiece is one of the most popular devices that have been widely used as the main means of cutting tooth structure and restorative material in dentistry. In consideration of usage and marketability of the dental handpiece, it is obviously worthy of investigating it. The goal of this paper is to establish the relationship between the air turbine speed and the supply route inside the handpiece. To do this, the Computational Fluid Dynamics(CFD) tool, Fine$^{TM}$/Turbo is used and the optimal supply route position is suggested from the simulation results. In addition, as an attempt for domestic product, the reverse engineering process of a high speed dental handpiece by 3D X-Ray CT equipment and wire cutting is presented for the Mark II model in NSK. In doing so, the 3D modeling of the handpiece parts is carried out with CATIA V5, and the interference between parts is examined. Finally, the result of performance test for the prototype produced in this research is presented.

A Combined Bearing Arrangement for High Damping Spindle Systems (고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구)

  • Lee, C.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

Numerical Analysis of Flow Phenomena in Cylindrical Shell with Baffle according to the Position of Inlet and Outlet (출.입구 위치에 따른 배플을 갖는 원통내 유동특성에 대한 수치해석)

  • Shin, Y.H.;Sayeed, S.M.;Jean, Y.C.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-26
    • /
    • 2011
  • A numerical simulation on the flow field was carried out on the cylindrical shell with baffles. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The effect of the location of inlet and outlet on the cylindrical shell with baffle is investigated by varying flow rate. The angle between the location of In/Outlet and baffle cutting part is $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$ and $180^{\circ}$. The present results show that the pressure drop is dependent on Reynolds number in the inlet area and position of inlet and outlet; i.e., the pressure drop increases with increasing Reynolds number and the pressure drop decreases with increasing angle between baffle cutting part and position of inlet and outlet.