• 제목/요약/키워드: Cutting stability

검색결과 273건 처리시간 0.052초

지구정보시스템을 이용한 금수산일대의 암반사면 안정성 평가 (Analysis of Rock Slope Stability by Using GIS in Mt. Keumsu Area)

  • 배현철
    • 자원환경지질
    • /
    • 제33권1호
    • /
    • pp.77-88
    • /
    • 2000
  • The goal of this study is to assess the spatial distribution of natural slopes and cutting slopes under would-be development. For this goal, a quantitative slope stability analysis method using GIS integrated with a computer program was developed. Through field investigations, the discontinuity parameters were collected such as orientation of discontinuity, persistence, spacing, JRC, JCS, and water depth. The distributions were interpolated from the ordinary kriging method in ARC/INFO GIS after variogram analysis. The layers showing all parameters needed for limit equilibrium analysis were constructed. The final layer using GIS works composed of 162,352 polygons, that is, unit slopes. The rock slope stability analysis program was coded by C++ language. This program can calculate geometrical vectors related to rock block failures using input orientation data and direction and dimension of strength to occur failure. Also, this can calculate shear strength of joints through empirical equations and quantitative factors of safety. This methodology was applied to the study area which is located in Jaecheon city and Danyang-gun of the northeastern Keumsu is about 135$km^2$. As a result, the study area was entirely stable but unstable, that is, factor of safety less than 1.0dominantly at the slopes near Keumsil, Daejangri, Keumsungmyun and Sojugol, Mt. Dongsan, Juksongmyun by the natural slope stability analysis. Assuming the cutting slope showing the same direction immediate, and quantitative analysis of factors of safety for a regional area could be conducted through GIS integrated with a computer program of limit equilibrium.

  • PDF

AE 신호의 주파수분석에 의한 Chatter 진동의 감시 (Monitoring of Chatter Vibration by Frequency Analysis of AE Signals)

  • 조대현
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.157-164
    • /
    • 2000
  • A machine tool generally has some serious stability problems in the form of tool chatter during the cutting process. Chatter vibration deteriorates the surface finish, reduce tool and machine life, accelerates machine tool system component wear, and may lead to an unacceptable noise sound in the working environment. In this study, the behavior of spectral density of AE signal and principal cutting force signal in order to monitor the chatter vibration in the cutting process has been investigated. From the results, the reliability of proposed monitoring method has been confirmed.

  • PDF

AE 및 Force 신호의 주파수분석에 의한 Chatter 진동의 감시 (Monitoring of Chatter Vibration by Frequency analysis of AE & Force Signals)

  • 조대현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.14-19
    • /
    • 2000
  • A machine tool has some serous stability problem in the from of tool chatter during the cutting process. Chatter vibration deteriorates the surface finish, reduce tool and machine life, accelerate machine tool system component wear, and may lead to an unacceptable noise sound in the working environment. In this study, in order to moni색 of the chatter vibration on the cutting process, the behavior of spectral density of AE signal and principal cutting force signal has been investigated. Furthermore, its reliability from obtained the results has been studied to evaluate and confirm the proposed method with the application procedure and the experimental results.

  • PDF

CNC선반 C축 Turn-mill 가공에 있어서 절삭공구형상이 표면 거칠기에 미치는 영향 (The Effect of Surface Roughness on Cutting Tool Shape in CNC Lathe C-Axis Turn-mill Machining)

  • 이순관
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.62-68
    • /
    • 2017
  • Since the aircraft parts industry is a high-value-added industry, mass production order production, and the hundreds of thousands. Therefore, parts produced However, since these parts require high reliability and stability, a high degree of precision is required. In Korea, there on the roughness of the machined surface in cutting process. However, research on the surface roughness characteristic obtained by which is widely used for aircraft parts is still insufficient in Korea. The purpose of this study is to investigate the effect of turning tool rotation speed and X axis feed rate on the surface roughness of cutting tools in CNC lathes during cutting of aluminum alloy 7075.

정밀가공을 위한 20,000rpm 중절삭 스핀들 해석에 관한 연구 (A Study on the Analysis of 20,000rpm Heavy-Cutting Spindle for Precision Machining)

  • 오남석;김동현;이춘만
    • 한국정밀공학회지
    • /
    • 제32권1호
    • /
    • pp.57-61
    • /
    • 2015
  • A spindle unit is very important in machine tools. It has a direct effect on machining accuracy. The static and dynamic characteristics of the spindle unit should be considered in the initial design stage for manufacturing of precision product. This study describes an investigation for deriving design stability of a 20,000rpm heavy-cutting spindle for precision machining. Static and dynamic characteristics of the spindle, such as deformation, stress, natural frequency and mode shapes are analyzed using finite element analysis. The 20,000rpm heavy-cutting spindle is confirmed that it is successfully designed through finite element analysis.

주축 변위 신호를 이용한 밀링가공의 채터 감시 (Chatter Monitoring of Milling Process using Spindle Displacement Signal)

  • 장훈근;김일해;장동영
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.140-145
    • /
    • 2007
  • To improve productivity of a metal cutting process, it is required to monitor machining stability in real time. Since cutting environment is harsh against sensing conditions due to vibration, chip, and cutting fluid, etc., it is necessary to develop a robust and reliable sensing system for the practical application. In this work, a chatter monitoring system was developed and its effectiveness was proved. Spindle displacement caused by cutting was selected as a main monitoring parameter. A cylindrical capacitive displacement sensor was adopted. Chatter frequencies were identified through modal analysis. To quantify chatter vibrations, chatter correlation coefficient was introduced. The identification of the monitoring system showed a good agreement with the result of experiment.

A Study on the Characteristics of BTA Deep Drilling for Marine Part Carbon and Alloy Steels

  • Sim, Sung-Bo;Kim, Chi-Ok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제3권1호
    • /
    • pp.40-48
    • /
    • 2000
  • The term "deep holes" is used to describe the machining of holes with a relatively large length to diameter ratio. The main feature of BTA deep hole drilling is the stabilization of cutting force necessary for the self guidance of the drill head. An additional feature is the cutting tool edges that are unsymmetrically placed on the drill head. There is an increasing necessity to predict the hole geometry and other dynamic stability behavior of deep hole drilling guidance. In this study, the effects of BTA deep hole drilling conditions on the hole profile machined piece are analyzed using domain analysis technique. The profile of deep hole drilled work piece is related to cutting speed, feed rate, chip flow, tool wear, and so on. This study deals with the experimental results obtained during the BTA drilling on SM45C, SM55C carbon steels and SCM440 steels under various cutting conditions, and these results are compared with analytical evaluations.aluations.

  • PDF

평판의 정면밀링 가공에서 발생하는 채터 (Chatter in Plate Milling with a Face Mill)

  • 이상민;이영수;주종남
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.46-54
    • /
    • 2004
  • A cutting force model predicting the dynamic force induced by the axial vibration of it plate in face milling is introduced. When a plate face is milled, deformation in tool axial direction is considerable. Therefore, cutting forces are affected by not only inner-outer modulation in feed direction but also by axial deformation. A PTP (peak-to-peak) diagram made by the simulated dynamic force model is evaluated. The stability of the face milling process such as the chatter outset, and the stable cutting region can be simply estimated. Simulation results are compared with that of experiment.

복합공구대 디스크임계돌출거리와 절삭력과의 관계에 관한 연구 (A Study on the Relationship between the Cutting Force and the Critical Ejecting Distance of Disk for a Mill Turret)

  • 최지환;김재실;조수용
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.110-116
    • /
    • 2013
  • Curvic coupling of mill turret should maintain disk weight and the cutting resistance which occurs the machining operation and must also have power transmission function. In order to improve machining operation range, the ejecting distance from curvic coupling to the disk must increase as much as possible. But moment is increased by the lack of capacity of the curvic coupling. Increase of moment is the cause of vibration/noise and degradation of machining performance not only stability problem. The manufacturer of mill turret has no the design information between the ejecting distance and the cutting resistance with safety of curvic coupling. Therefore this study describes a finite element analysis model of mill turret using ANSYS workbench. The structural analyses and modal analyses with varying of the ejecting distances and cutting resistances are performed. Finally the equation for relationship between the critical ejecting distance and the cutting resistance is defined under 5 of the safety factor for the maximum von-Mises stress at the curvic coupling.

다철근 스프링 네일링 공법의 보강효과 검토에 관한 연구 (A Study on Reinforcing Effect of Multi-Bar Spring Nailing)

  • 이충호;정영진;김동식;채영수
    • 한국재난정보학회 논문집
    • /
    • 제3권2호
    • /
    • pp.147-169
    • /
    • 2007
  • This study investigates the reinforcing effects of the Multi-bar Spring nails with respect to the conventional Soil-nails in artificial slopes. Based on wide experience related to design and construction, soil nails have been widely applied to reinforce slope in the world. Multi-bar spring nails are one of the improved soil nailing methods. These method maximizes bending, shearing, pull-out resistance for those multi-nails, not unit nail, that are inserted in the borehole using special spacer at regular intervals. In addition, because cutting plane is confined effect resulting from a pressured plate at the end of the nails with compression spring equipment, slope stability is secured using MS-nailing method. Analyzing bending, pull-out, shearing condition of MS-nail, it was examined throughly elastic region, load transfer capacity, reinforcing effect on cutting plate of MS-nails. In addition, Pilot and laboratory tests, numerical analysis were carried out to verify the superiority of MS-nailing method. In case, MS nailing method is applied to reinforce artificial slope, it was analyzed that bending, pull-out, shearing resistance was increased more than existing nailing method was applied. In this study, it was shown that surface failure was more or less prevented using MS-nailing method, confining effect on cutting plane using spring stuck to flexible equipment.

  • PDF