• 제목/요약/키워드: Cutting blades

검색결과 57건 처리시간 0.025초

초경날식 절삭형 완패스정미기의 개발 (Development of One-Pass Rice Whitener with Cutting Blades of Hard Metal)

  • 정종훈
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.199-209
    • /
    • 1997
  • A one-pass rice whitener with hard metal blades was developed to solve the problems of the existing one-pass rice whitener. The developed one-pass rice whitener was tested and improved through various milling experiments. It showed high performance such as the capacity of 3.5 t/h, the energy consumption of $1.0 kWh/100kg$, milled rice recovery of 91.6%, broken rice rate of 2.2%, the crack rate of 1.9% at the 750 rpm of the roller shaft, compared with those other domestic and foreign one-pass rice whiteners. Especially, it could whiten broun rice of high moisture (16~l7%) with water sprayed at low internal pressure of less than $0.2 kg/cm^2$ and low temperature due to the characteristics of the cutting part composed of 24 hard metal blades. The developed one-pass rice whitener was industrilized and distributed to some rice processing complexs in one fourth price compared with that of imported one-pass rice whiteners.

  • PDF

와동면(窩洞面)의 주사전자현미경적(走査電子顯微鏡的) 연구(硏究) (A SCANNING ELECTRON MICROSCOPIC STUDY OF CAVITY WALL)

  • 이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제11권1호
    • /
    • pp.11-18
    • /
    • 1985
  • The purpose of this study was to observe the facial, lingual and gingival walls of the cavity walls with various kinds of cutting tools. Class II cavities were prepared in newly extracted sound humen mandibular 1st left premolars, and observed in Sanning electron microscope. Diamond point (#201) and Tungsten Carbide burs (#170L) were used in ultra high speed handpieces (rpm 200000), and Tungsten Carbide bur (#702) and Steel bur (#560) were used in conventional handpieces (rpm 6000). All cavities were prepared under water spray, except for some which were finished with a dry abrasive stone (#57). Some cavities were finished with chisels (#41, 42, 83). The following results were obtained. 1. The cavity walls prepared with Diamond point were rougher than the cavity walls with Carbide burs and Steel burs. 2. The chisels were produced the smoothest surface. 3. The cavity walls which were prepared with cutting blades rotated toward enamel surface from outside, were smoother than cavity walls which were prepared with cutting blades rotated toward outside from the enamel surface.

  • PDF

밀링가공에서 부등각 엔드밀의 절삭특성 평가 (An Evaluation on Cutting Characteristics in Milling Process with Different Helix Angle Endmills)

  • 이상복;김원일;왕덕현;김실경
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1-7
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining tolerance. A conventional endmill which all low blades are $30^{\circ}$ helix angles and a different helix angle endmill which the opposite two blades are $30^{\circ}$ and the other opposites are different helix angles were studied. The cutting farce, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type A($25^{\circ}$$30^{\circ}$) appeared to bring the most satisfactory result.

밀링가공에서 부등각 엔드밀의 절삭특성에 관한 고찰 (Aa Evaluation on Cutting Characteristics in Milling process with Different Helix Angle Endmills)

  • 이상복;김원일;왕덕현;김실경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.196-201
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining-tolerance. A conventional endmill which all four blades are $30^\circ$ helix angles and a different helix angle endmill which the opposite two blades are $30^\circ$ and the other opposites are different helix angles were studied. The cutting force, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling, machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type $A(25^\circ+30^\circ)$ appeared to bring the most satisfactory result.

  • PDF

평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구 (A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining)

  • 최성윤;권대규;박인수;왕덕현
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

반응표면법을 이용한 5축 임펠러 정삭 가공의 최적화 (Optimization of Finish Cutting Condition of Impeller with Five-Axis Machine by Response Surface Method)

  • 임표;양균의
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.924-933
    • /
    • 2007
  • An impeller is a important part of turbo-machinery. It has a set of twisted surfaces because it consists of many blades. Five-axis machining is required to produce a impeller because of interference between tool and workpiece. It can obtain good surface integrity and high productivity. This paper proposes finish cutting method for machining impeller with 5-axis machining center and optimization of cutting condition by response surface method. Firstly, cutting methods are selected by consideration of operation characteristics. Secondly, response factors are determined as cutting time and cutting error for prediction of productivity. Experiments are projected by central composite design with axis point. Thirdly, regression linear models are estimated as single surface in the leading edge and as dual surface in the hub surface cutting. Finally, cutting conditions are optimized.

터빈블레이드의 5축 고속가공에서 가공경로와 공구기울임 방향의 선정 (Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade)

  • 임태순;이유하;이득우;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.155-160
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries has brought new technological challenges, rebated to the growing complexity of products and the new geometry of the models. High speed milling with a 5-Axis milling machine has been widely used fur 3D sculptured surface parts. When turbine blades are machined by a 5-axis milling, their thin and cantilever shape causes vibrations, deflections and twists. Therefore, the surface roughness and the waviness of the workpiece are not good. In this paper, the effects of cutter orientation and the lead/tilt angle used to machine turbine blades with a 5-axis high speed ball end-milling were investigated to improve geometric accuracy and surface integrity. The experiments were performed using a lead/tilt angle of 15$^{\circ}$ to the workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vortical inward directions. Workpiece deflection, surface roughness and the machined surface were all measured with various cutter orientations such as cutting directions, and lead/tilt angle. The results show that the best cutting strategy for machining turbine blades with a 5-axis milling is horizontal inward direction with a tilt angle.

  • PDF

Automatic NC-Date Generation Method for 5-axis Cutting of Turbine-Blades by Finding Safe Heel-Angles and Adaptive

  • Piao, Cheng-Dao;Lee, Cheol-Soo;Cho, Kyu-Zong;Park, Gwang--Ryeol
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.753-761
    • /
    • 2004
  • In this paper, an efficient method for generating 5-axis cutting data for a turbine blade is presented. The interference elimination of 5-axis cutting currently is very complicated, and it takes up a lot of time. The proposed method can generate an interference-free tool path, within an allowance range. Generating the cutting data just point to the cutting process and using it to obtain NC data by calculating the feed rate, allows us to maintain the proper feed rate of the 5-axis machine. This paper includes the algorithms for: (1) CL data generation by detecting an interference-free heel angle, (2) finding the optimal tool path interval considering the cusp-height, (3) finding the adaptive feed rate values for each cutter path, and (4) the inverse kinematics depending on the structure of the 5-axis machine, for generating the NC data.

프로펠러 블레이드의 형상설계 및 CNC 공구경로 생성 (Parametric Shape Design and CNC Tool Path Generation of a Propeller Blade)

  • 정종윤
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.46-59
    • /
    • 1998
  • This paper presents shape design, surface construction, and cutting path generation for the surface of marine ship propeller blades. A propeller blade should be designed to satisfy performance constraints that include operational speed which impacts rotations per minutes, stresses related to deliverable horst power, and the major length of the marine ship which impacts the blade size and shape characteristics. Primary decision variables that affect efficiency in the design of a marine ship propeller blade are the blade diameter and the expanded area ratio. The blade design resulting from these performance constraints typically consists of sculptured surfaces requiring four or five axis contoured machining. In this approach a standard blade geometry description consisting of blade sections with offset nominal points recorded in an offset table is used. From this table the composite Bezier surface geometry of the blade is created. The control vertices of the Hazier surface patches are determined using a chord length fitting procedure from tile offset table data. Cutter contact points and path intervals are calculated to minimize travel distance and production time while maintaining a cusp height within tolerance limits. Long path intervals typically generate short tool paths at the expense of increased however cusp height. Likewise, a minimal tool path results in a shorter production time. Cutting errors including gouging and under-cut, which are common errors in machining sculptured surfaces, are also identified for both convex and concave surfaces. Propeller blade geometry is conducive to gouging. The result is a minimal error free cutting path for machining propeller blades for marine ships.

  • PDF