• Title/Summary/Keyword: Cutting Thickness

Search Result 324, Processing Time 0.032 seconds

Effect of cutting flute length and shape on insertion and removal torque of orthodontic mini-implants (교점용 미니 임플랜트의 cutting flute의 길이 및 형태에 따른 식립 및 제거 토크의 비교)

  • Yun, Soon-Dong;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2009
  • Objective: The purpose of this study was to evaluate the effect of length and shape of cutting flute on mechanical properties of orthodontic mini-implants. Methods: Three types of mini-implants with different flute patterns (Type A with 2.6 mm long flute, Type B with 3.9 mm long and straight flute, Type C with 3.9 mm long and helical flute) were inserted into the biomechanical test blocks (Sawbones Inc., USA) with 2 mm and 4 mm cortical bone thicknesses to test insertion and removal torque. Results: In 4 mm cortical bone thickness, Type C mini-implants showed highest maximum insertion torque, then Type A and Type B in order. Type C also showed shortest total insertion time and highest maximum removal torque, but Type A and B didn't showed statistically significant difference in insertion time and removal torque. In 2 mm cortical bone thickness, there were no significant difference in total insertion time and maximum removal torque in three types of mini-implants, but maximum insertion torque of Type A was higher than two other Types of mini-implants. Conclusions: Consideration about length and shape of cutting flute of mini-implant is also required when the placement site has thick cortical bone.

The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar (광섬유 센서의 보링 바 삽입에 의한 진동측정)

  • Song, Doo-Sang;Hong, Jun-Hee;Guo, Yang-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.

Effects of process parameters on kerfwidth and characteristics of the cut surface for the case of cutting of CSP 1N sheet using high power continuous wave Nd:YAG laser (고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 박판재 절단시 공정변수가 절단폭 및 절단표면특성에 미치는 영향)

  • Ahn D.G.;Kim M.S.;Lee S.H.;Yoo Y.T.;Park H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.418-421
    • /
    • 2005
  • The objective of this research work is to investigate the effects of process parameters, such as power of laser, travel speed of laser and material thickness, on kerfwidth and characteristics of the cut surface for the case of cutting of CSP 1N sheet using high power continuous wave Nd:YAG laser. In order to find relationship between the process parameters on the quality of the cut section, such as kerfwidth, surface roughness and the striation formation, several laser cutting experiments are carried out. From the results of experiments, an optimal cutting speed for each cutting condition has been obtained to improve the quality of the cut surface.

  • PDF

Micro Machining Characteristics of V-shaped Single Crystal Diamond Tool with Ductile Workpiece (V형 다이아몬드공구에 의한 연질소재의 미세절삭특성 연구)

  • Hong, Sung-Min;Je, Tae-Jin;Lee, Dong-Ju;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.28-33
    • /
    • 2005
  • Recently, trends of TFT-LCD toward larger scale and thinner thickness continue. so, demands of Light Guide Panel (LGP) which is to substitute for prism sheet are appeared. Functions of LGP obtaining polarization of light of the prism sheet as well as the incidence and reflection of light are demanded. This prism type LGP to complete functions of the existing LGP and polarization at once must be supported by micro machining technology of LGP surface. In this research, the machining characteristics of the various materials were analysed by shaping using V-shaped single crystal diamond tool. The characteristics are machined surface, machining force due to the variation of cutting depth. Used specimens are engineering materials, which are 6:4 brass, oxygen-free copper, Al6061, PC, PMMA. The FFT analysis of the measured cutting force was conducted. The cutting characteristics were analyzed and the optimum cutting conditions with materials were established.

  • PDF

Feasibility Study of Cryogenic Cutting Technology by Using a Computer Simulation and Manufacture of Main Components for Cryogenic Cutting System (컴퓨터 시뮬레이션을 이용한 극저온 절단 기술 적용성 연구 및 극저온 절단 시스템 주요 부품 제작)

  • Kim, Sung-Kyun;Lee, Dong-Gyu;Lee, Kune-Woo;Song, Oh-Seop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • Cryogenic cutting technology is one of the most suitable technologies for dismantling nuclear facilities due to the fact that a secondary waste is not generated during the cutting process. In this paper, the feasibility of cryogenic cutting technology was investigated by using a computer simulation. In the computer simulation, a hybrid method combined with the SPH (smoothed particle hydrodynamics) method and the FE (finite element) method was used. And also, a penetration depth equation, for the design of the cryogenic cutting system, was used and the design variables and operation conditions to cut a 10 mm thickness for steel were determined. Finally, the main components of the cryogenic cutting system were manufactures on the basis of the obtained design variables and operation conditions.

  • PDF

A Study on the Hand drum form of Wire-Cut Electric Discharge Machining (와이어 방전가공에 의한 북현상에 관한 연구)

  • 김원일;이재명;강종표
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.9-14
    • /
    • 1997
  • From the experimental study of wire-cut Electric Discharge Machining for alloyed steel and tungsten carbide, the characteristics such as hand drum form has been observed and evaluated for various conditions. Hand drum form can be improved when gap voltage and spark cycle become smaller, their thickness become thinner, wire tension become larger and number of cutting is done so many times. When wire-cut 60mm thickness tungsten carbide in normal condition, Hand drum form becomes larger due to the low conductivity inducing cobalt composite rising by electrolysis.

  • PDF

A technique for the identification of friction at tool/chip interface during machining

  • Arrazola, P.;Meslin, F.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.319-320
    • /
    • 2002
  • Numerical simulation of chip formation during high speed machining requires knowing the friction at tool/chip interface. This parameter is hardly identified and generally the loadings (temperature, force) during the identification are not similar to those encountered during machining. Thus, Coulomb friction identified with pin-on-disc device is often used to conduct numerical simulation. The used of this technique cannot leads to good numerical results of chip formation compared to the experimental tests especially in the case of low uncut chip thickness. In this contribution, we propose a new method to evaluate the friction at tool/chip interface. In fact several Coulomb friction parameters are identified corresponding to several parts of the cutting tool. Experimental tests have been conducted allowed us to determinate both the level and the distribution of the Coulomb friction. Experimental results are also compared to the results of orthogonal cutting simulation. We show that this technique allows predicting accuracy results of chip formation.

  • PDF

Influence of Abrasive Water-Jet on Workpiece Geometry (Abrasive Water-Jet이 가공물의 형상에 미치는 영향)

  • 장현석;하만경;류인일;곽재섭;이상진;이기백
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.585-590
    • /
    • 2002
  • Abrasive water-jet(AWJ) machining is a new cutting technology. The AWJ can cut various materials touch as metal, glass and stone. However, the AWJ machining makes troubles including kerf, rounding and side taper. In this study, we investigated the correlation between parameters of abrasive water-jet machining arid cutting characteristics. The machining parameter were the material thickness and the traverse speed. The experiment was conducted to cut the stainless steel(STS41) and the mild steel(SS41) specimens. The results of the experiment weirs presented as the relation between cutting conditions and trouble of a dimension error, a conner error, an uncut width and a kerf.

  • PDF

A Description Method of Linear Hotwire Posture in Space for the Cutting System of VLM-S (가변적층 쾌속조형공정용 CAD 시스템 개발을 위한 3차원 공간상에서의 선형열선절단기 자세표현에 관한 연구)

  • 이상호;문영복;안동규;양동열;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.11-14
    • /
    • 2001
  • In all Rapid Prototyping(RP) processes, computer-aided design(CAD) solid model is sliced into thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successively deposited and, at the same time, bonded onto the previous layer, the stacked layers form a physical part of the model. The objective of this study is to develop a method for obtaining necessary coordinates$(x,\;y,\;\theta_x,\;\theta_y)$ to position linear hotwire of the cutting system in three-dimensional space for the Variable Lamination Manufacturing process (VLM-S), which utilizes expandable polystyrene foam sheet as part material. In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes, such as a spanner, a patterned columm, and a pyramid were made using data obtained from the method.

  • PDF

Characteristic evaluation of microscopic precision in high speed machining (고속가공에서 미시적 정밀도의 특성 평가)

  • 김철희;김전하;강명창;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.352-357
    • /
    • 2001
  • In this study, residual stress was investigated to evaluate damaged layer in high speed machining through simulation. In machining steel(STDll), residual stress remaining in machined surface was mainly appeared as compressive stress. The scale of this damaged layer more depends on feed per tooth and radial depth than spindle speed. Damaged layer was measured by optical microscope and hardness method. The micro-structure of damaged layer was a martensite because of cutting force and cutting temperature. Thickness of damaged layer is increased with incresing of feed per tooth and radial depth.

  • PDF