• Title/Summary/Keyword: Cutting Shape

Search Result 723, Processing Time 0.036 seconds

A Basic Study of Automatic Rebar Length Estimate Algorithm of Columns by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 기둥 철근길이 자동 산정 기초 연구)

  • Oh, Jin-Hyuk;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.21-22
    • /
    • 2023
  • In reinforced concrete constructions, reinforcing bar generates more CO2 per unit weight than other construction materials. In particular, cutting and bending rebar is the main source of rebar waste in the construction industry. Rebar-cutting waste is inevitable during the construction of a reinforced concrete structure since the rebar is not manufactured as designed. Large amounts of waste can be avoided by utilizing optimal cutting patterns and schedules. This research provides a fundamental analysis of the automatic calculation of column rebar length using BIM-based shape codes to minimize cutting waste to near zero. By employing this approach in practice, it is possible to minimize the rate of rebar-cutting waste, reduce costs, shorten construction duration, and reduce CO2 emissions. In addition, the development of this research will serve as a clue for the development of BIM-based rebar layout automation algorithms.

  • PDF

A Study on the Characteristics of Compounding Electrolytic Machining in micro-cutting (전해복합에 의한 미세절삭가공 특성연구)

  • Son, M.K.;Son, S.M.;Ahn, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.502-506
    • /
    • 2001
  • This paper presents a new method for cutting steel with a diamond tool using electrolysis. The electrolysis is adopted in the diamond cutting to prevent the high chemical activity between a diamond tool and an iron-based workpiece. The basic principle of the method is to oxdize a thin substrate of the workpiece by electrolysis ahead of the diamond tool which cuts the oxidized layer. A desired shape can be obtained by repeating this process. The cutting force is reduced because the diamond tool removes only the weakened material by electroysis. The reduction of the cutting force suppresses the excessive wear of the diamond tool. The oxidization penetrates several micrometers in depth along the previously formed shape. The corrosion rates depend on current density and make suggestions on the optimum cutting conditions.

  • PDF

Machining Characteristics of Hemisphere Shape by Ball Endmilling (볼엔드밀가공에 의한 구면형상의 가공특성)

  • Wang, Duck Hyun;Kim, Won Il;Lee, Yun Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

Assessment of cutting performance and chip breaking characteristics with a nondimensional parameter consists of cutting condition and tool shape factor(l) -Orthogonal cutting- (절삭 조건과 공구 형상 인자로 구성된 무차원 파라미터에 의한 절삭 성능 및 칩절단 특성 평가(I))

  • LEE, Young-Moon;CHOI, Won-Sik;SEO, Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.179-184
    • /
    • 1994
  • In this study a nondimensional parameter, feed/land length(F/L) was introduced, and using this parameter, cutting performance and chip breaking characteristics of the groove and the land angle type chip formers were assessed. Specific cutting energy consumed and shape of broken chip with its breaking cycle time were appraised to find out the ranges of F/L value where efficient cutting and effective chip breaking could be achieved. C type chip was found out to be the most preferable in terms of cutting efficiency.

  • PDF

Machinability Evaluation according to Variation of Endmill Shape for High Speed Machining (고속가공용 엔드밀 형상변화에 따른 가공성 평가)

  • Kang, Myung-Chang;Kim, Jeong-Suk;Lee, Deuk-Woo;Kim, Kwang-Ho;Ha, Dong-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.133-138
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool fur high speed machining in not close behind that of machine tool. In this study, 10 types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge and rake angle. Cutting condition is selected for several experiments and measuring cutting farce, tool life, tool wear and chip shape according to cutting length. 3-axis cutting farces are acquired from the tool dynamometer with high natural frequency, as the conventional tool dynamometer (9257B, Kistler) has cannot measure the state of high frequency force. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. And flow is interrupted at the beginning of cutting by the decrease of rake angle. By above results. it is suggested the endmill tool with 45$^{\circ}$helix angle, 6 cutting edge and -15$^{\circ}$rake angle is suitable for high speed machining.

Development of 3D Modeling System to Display the Cutting Shape of H-Beam Used in Ships and Ocean Plants (선박 및 해양 플랜트용 H-빔 절단을 위한 3차원 형상 모델링 구현 시스템 개발)

  • Park, Ju-Yong;Jo, Hyo-Jae;Lee, Ji-Hoon;Park, Ji-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.47-52
    • /
    • 2011
  • 3D geometric modeling has a lot of advantages in the field of design and manufacturing. Many manufacturing processes and production lines are using 3D geometric modeling technique. These help reduce the cost and time for manufacturing. The purpose of this study is the realization of a 3D cutting shape for an H-Beam used in ships and ocean plants. The complex 3D cutting shapes could be represented by using the boolean operation of basic figures. Graphic functions with parameters were used to simply define the basic figures. The developed system can show the complex cutting shape of an H-beam simply and quickly. This system can be utilized for the automatic cutting system for an H-beam.

A Study on the Laser Cutting Characteristics of Magnesium alloys (마그네슘합금의 레이저 절단가공 특성에 관한 연구)

  • Jung, Han-Byul;Kim, Hyung-Sun
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.227-235
    • /
    • 2018
  • Studies on the laser cutting processing characteristics of magnesium alloys can be divided into three parts, comparing the cutting faces of magnesium alloy and aluminum alloy, observing the shape of the corner where straight lines meet, and observing the straight lines and arcs. First, there were no laser cutting conditions for magnesium alloys, so it was observed to cut magnesium alloy and aluminum alloy under the same processing conditions as aluminum alloy to shape and surface of the cut surface. Next, to observe the characteristics of the corner, we observed the shape of the corner according to the angle change of the part where the two lines meet, and finally we observed various angles to observe the characteristics of the part where the arc meets the line. Finally, laser cutting processing characteristics of magnesium alloys and aluminum alloys obtained based on the above study contents were summarized.

A Mechanistic Model for the Prediction of Cutting Forces in Band Sawing (톱기계에서 절삭력 예측을 위한 역학모델)

  • Jung, Hoon;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.145-152
    • /
    • 1998
  • In this research, in order to predict the cutting force using a mechanistic model, specific cutting force was firstly obtained through the cutting experiments. Band sawing process is similar to a milling, that is multi-point cutting. Therefore it is not easy matter to evaluate specific cutting force. Thus, the thickness of workpiec was made smaller than one pitch of the saw in terms of fly cutting in the face milling process. Then the cutting force was predicted by analyzing the geometric shape of a saw tooth The tooth shape used in the research was raker set style that was generally used in band sawing. And a set of teeth is comprised of three teeth, those are ranked as left, straight and right. The mechanistic model was developed in this study considered those shapes of each tooth. From the validation experiments, the predicted cutting forces coincided well with the measured ones. Therefore the predicted cutting forces can be used for the adaptive control of saw engaging feed rate in the band sawing.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Development of Creating Continuous and Common Cutting NC Data Program (소부재 연속/공용 절단 데이터 생성 프로그램 개발)

  • Hyun, Sung-Yeol;Oh, Sung-Kwon;Huh, Ok-Jae;Shim, Hyun-Sang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.101-105
    • /
    • 2011
  • In most shipbuilding company, cutting procedure is proceed by cutting machine which run by CNC(Computer Numerical Code) data. In our cutting process, all CNC data is created by our nesting post processor system automatically. Among them, in case that cutting piece in the remnant plate, our system creates only one piece CNC data. Because remnant plate is not typical shape, and ship designers don't know remnant plate shape and quantity. In can happen some merit and good point if we modify 1:1 piece NC data by shorten cutting path, reducing cutting time or re-arrangement piece. For modifying cutting data, outside workers have to call to ship designer or have to go to NC control room where control the CNC system and cutting machine. It makes stop work process, and it waste time. In this paper, we introduce a program that can modify and replace 1:1 NC data with continuous or common NC data automatically.

  • PDF