• 제목/요약/키워드: Cutting Mechanism

검색결과 356건 처리시간 0.027초

Clay가공에 있어서 Burr 생성기구에 관한 연구 (A Study on the Bburr Formation Mechanism in Clay Machining)

  • 양균의;고성림
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.73-84
    • /
    • 1990
  • A burr has been defined as an undesirable projection of material formed as the result of plastic flow from a cutting or shearing operation. It is Unavoidable in all kinds of machining operation. This paper describe the burr formation mechanism which is based on the behavior of workpiece material during orthogonal machining of the clay on the milling machine. Specially in this report the rollover burr is dealt as a specific case of the chip formation in the final stage of cutting. The negative shear angle is introduced as an important features of burr formation. It is found that the burr formation process is divided into three stage-initiation, development of negative shearing, and formation of the burr with appropriate assumptions. Using above the burr formation mechanism, the size of burr can be estimated by cutting conditions.

  • PDF

피에조 이송기구를 이용한 초소형 선반 (A Micro Turning Lathe Using Piezo Feed Driver)

  • 고태조;정종운;정병묵;김희술
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.151-158
    • /
    • 2005
  • Micro-machine tool is essential in the micro/meso cutting for the sake of saving of space, resources, and energy. In this research, a micro-turning lathe was fabricated with piezoelectric feed drive mechanism, and motion of each axis was generated by stepwise mechanism with two piezo actuators. The resolution to drive the axis was $0.05{\mu}m$ and position accuracy less than $2{\mu}m$ was assured. From the positioning experiment, piezo feed mechanism is good enough for the micro machine tools. Many fuming experiments were carried out with diamond-cutting tools to evaluate cutting capability of a machine tool. Continuous flow type chip could be obtained even if the cutting speed was very low due to small diameter of workpiece. However, thorough investigation about machineability in micro/meso cutting is inevitable to assure high quality surface roughness in micro machine tool.

취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향 (The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials)

  • 김주현
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF

절삭유의 미립화 특성 (Atomization Characteristics of Cutting Fluids)

  • 황준;정의식;정진열;황덕철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.943-946
    • /
    • 2002
  • This paper presents atomization characteristics of cutting fluids. To analyze the behavior characteristics of cutting fluid, analytical approach and experimental measurement were performed to predict the aerosol size, velocity and concentration due to cutting fluid atomization mechanism in machining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

톱니형Chip의 절삭기구와 Energy에 관한 연구 (A Study on the Cutting Mechanism and Energy with Saw-toothed Chip)

  • 김항영;오석형;서남섭
    • 한국정밀공학회지
    • /
    • 제4권3호
    • /
    • pp.44-51
    • /
    • 1987
  • In metal cutting various types of chips are produced in consequence of cutting conditions. Flow-type chips have been studied in most cases because they are easier to be analyzed, but the actual surfaces of chips are not smooth, but crushed. This paper deals with saw-toothed chips, special types of flow-type chips, which have deep concaves and high convexes and sharp angles on the free surface. I tried to establish the theory of saw-toothed chip mechanism through experimental observation, that is, the mathmatical model of the cutting energy and cutting mechanism through the geometrical observation of the chips by using a microscope. The results obtained are as follows: 1. The mechanism of saw-toothed chips is diffenent from that of general flow-chips. 2. In the case of saw-toothed chips, the shear angle must be measured by the hypotenuse angle and the rake angle, and the shear angle is more affected by the rake angle than by the hypotenbuse angle. 3. The friction angle is represented by .beta. = . pi. /4+ .alpha./ sub n/- .phi. which is different from Merchant's equation. 4. The pitch and the slip are greatly influenced by depth of cut, but the influence of the rake angle on it is small. 5. The normal stress and the shear stress on the shear plane decrease with the increase of the cutting depth, and they are almost independent on the variation of a rake angle. 6. The unit friction energy on the tool face, the unit shear energy on the shear plane, and the total cutting energy per unit volume decrease with the increase of rake angle and cutting depth.

  • PDF

회전날을 이용한 홍고추의 꼭지 절단 경향 분석 (Analysis of Red Pepper Calyx Cutting Using a Rotational Cutter)

  • 이승규;송대빈;정의권
    • Journal of Biosystems Engineering
    • /
    • 제28권3호
    • /
    • pp.209-216
    • /
    • 2003
  • Red pepper calyx cutting devices using a impacting force by a rotational cutter were devised and tested to obtain the fundamental data for development of a calyx removal unit. Fresh red peppers with 80∼87%(w.b.) of initial moisture contents were used as experimental materials. Square and wire type of rotational cutters were used to cut the red pepper calyx and the fresh red peppers were fed into the device both manually and automatically. Three rotational speeds of 250, 500, 700rpm were selected for a square, and 1000, 1500, 1800rpm for a wire type cutter respectively. Four types of red pepper fixing unit were used in manual feeding. The cutting rate of the square type cutter was over 50% regardless the shape and specification of the cutter. For the wire type cutter, the copper wire and nylon chord could not be applied to cut the red pepper calyx because of the low cutting rate. But for the fine wire, the cutting rate was higher and the cutting mechanism was more steady than copper wire and nylon chord. The cutting rate of automatic feeding and wire type cutting unit was about 70% for all levels of the rotational speed. The cutting rate was highly related to the impacting point of red pepper in carrier box. To increase the cutting rate using the rotational cutter, a proper device and mechanism was required to keep the impacting point consistently.

고속 동기 탭핑에서의 절삭 특성에 관한 연구 (Study of Cutting Characteristics in High Speed Synchronized Tapping)

  • 정용수;이돈진;김선호;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.304-307
    • /
    • 2002
  • High speed machining was accomplished. through the technological advances which covers the whole field of mechanical industry. But tapping have many troubles because of its complicate cutting mechanism, for example. tool damage, chip elimination and synchronization between spindle rotation and feed motion. But High speed tapping is so important that it marches in step with the flow of the times and make improvement in the productivity. In this paper we analyze mechanism of high speed synchronized tapping with the signal of tapping torque and spindle speed obtained through the newly developed high speed tapping machine(NTT-30B). We made an experiment with this machine on condition of various speed from 1000rpm to 10000rpm. As one complete thread is performed through the whole chamfer cutting, cutting torque increases highly in chamfer cutting, but smoothly in full thread cutting functioning of the threads guide. And the size of cutting torque according to spindle speed(rpm) was not enough of a difference to be conspicuous.

  • PDF

임의형상의 버 발생 메카니즘의 기하학적 해석 (Geometrical Analysis on the Formation Mechanism of Milling Burr on Arbitrary Feature)

  • 이제열;안용진;김영진
    • 한국CDE학회논문집
    • /
    • 제6권4호
    • /
    • pp.222-228
    • /
    • 2001
  • In the milling operation, the burr can be generated on the intersection of cutting tool and workpiece. Due to burr formation, we expect lower efficiency in the operation and the cost increase. In order to understand the burr formation mechanism in the milling operation on the arbitrary feature, we developed an algorithm to analyse and predict the exit burr formation mechanism. Firstly, the recognition of arbitrary shaped workpiece was done through the CAD data. This data includes point information on the vertices of the workpiece. Secondly, tile CAM data regarding tool geometry, tool path, cutting speed, and material data are retrieved to simulate the actual cutting process. Thirdly, we predict the exit burr formation on the edge of workpiece based on the geometric analysis. Lastly, an algorithm implemented in the Windows environment to visualize the burr formation simulation. With this information, we can predict which portion of workpiece would have the exit burr in advance so that we call manage to find a way to minimize the edit burr formation in the actual cutting.

  • PDF

유한요소법을 이용한 절삭가공 Burr 예측과 생성특성 연구 (Burr Prediction via Finite Element Method and Burr Formation Characteristics in Metal Cutting Process)

  • 황준;황덕철;우창기;양계준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1000-1003
    • /
    • 2001
  • This paper presents the numerical analysis and experimental verification to know the metal cutting burr formation mechanism in face milling operation. Finite element method are applied to predict the 2-D burr formation process prediction. Face milling process are adjusted to analyze the characteristics of burr shapes according to various cutting conditions. The cutting parameters were investigated with cutting speed, feed rate, depth of cut. Through the experiments various burr types are classified according to its shape and properties.

  • PDF

Analysis of Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in Turning Operation for Environmentally Conscious Machining(II)

  • Hwang Joan;Hwang Duk-Chul;Chung Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.3-7
    • /
    • 2005
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling and lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor. Cutting fluid's aerosol via atomization process can generate human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol of which particle size less than 10 micron appears near working zone under typical operation conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided as a basis of environmental impact analysis for environmental consciousness.