• Title/Summary/Keyword: Cutting Force Model

Search Result 271, Processing Time 0.026 seconds

Runout Modeling and Measurement Method in 4-flutes End Milling (4날 엔드밀 가공시 런아웃 모델링과 측정 방법)

  • 이기용;이동규;이근우;박진호;김정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.22-29
    • /
    • 2004
  • Runout causes severe differences among cutting force waveforms due to changes of rotational radii. Thus a runout model must be included in a cutting force model to simulate cutting force accurately. In this paper, a runout modeling method and a measurement method using a dialgauge were developed, which were easy to apply. To calculate runout parameters, a computer program algorithm which obtained runout parameters from measurement values was developed. Cutting force waveforms simulated from cutting force model considering runout effect and measured from experiments had good agreements for their wave size and order.

A Study on a New Cutting Force Model Including Unbalance (불평형을 고려한 절삭력 모델에 관한 연구)

  • 양완석;이수훈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • This paper is on a new cutting force model which includes the force caused by unbalance. The cutting under the different additional masses are measured with the spindle speed changed. The model is justified through correlation between simulation and experimental result.

  • PDF

A Mechanistic Model for the Prediction of Cutting Forces in Band Sawing (톱기계에서 절삭력 예측을 위한 역학모델)

  • Jung, Hoon;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.145-152
    • /
    • 1998
  • In this research, in order to predict the cutting force using a mechanistic model, specific cutting force was firstly obtained through the cutting experiments. Band sawing process is similar to a milling, that is multi-point cutting. Therefore it is not easy matter to evaluate specific cutting force. Thus, the thickness of workpiec was made smaller than one pitch of the saw in terms of fly cutting in the face milling process. Then the cutting force was predicted by analyzing the geometric shape of a saw tooth The tooth shape used in the research was raker set style that was generally used in band sawing. And a set of teeth is comprised of three teeth, those are ranked as left, straight and right. The mechanistic model was developed in this study considered those shapes of each tooth. From the validation experiments, the predicted cutting forces coincided well with the measured ones. Therefore the predicted cutting forces can be used for the adaptive control of saw engaging feed rate in the band sawing.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

An analysis of cutting force according to specific force coefficients (비절삭저항 상수 변화에 따른 절삭력 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.108-116
    • /
    • 2014
  • Considering the run-out effect and cutting force coefficients, the cutting force profile of half immersion end-milling was analyzed in detail. The effects of three specific cutting-force coefficients and three edge-force coefficients are verified. Through a detailed investigation, it is proved that the radial cutting force coefficients and are the major factors which increase the cutting forces Fx and Fy in end-milling. However, the axial cutting force coefficients have no influence on the force Fx and Fy changes in end-milling. Also, the analyzed end-milling force model shows good consistency with the actual measured force with regard to Fx and Fy. Thus, this model can be used for the prediction of the force history in end-milling with run-out, and it incurs a different force history with different start and exit immersion angles as well as holding effects.

Optimal design for face milling cutter by simulation

  • Kim, J.H.;Lee, B.C.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.76-85
    • /
    • 1993
  • Based on the cutting force model, three-dimensional optimal design model was developed and optimal designed tool which is minimized cutting force is developed by computer simulation technique. In this model the objective function which is minimized resultant cutting force was used and the variables are radial rake angle, axial rake angle, lead angle of the tool. The cutting forces using conventional and optimal tools by simulation, are compared and analyzed in time and frequency domains. In time domain the cutting force of optimal tool in feed direction was more reduced and less fluctuated than that of conventional tool. Cutting forces of optimal tool in X-and Z-directions are shown a little increased than those of conventional tool. In frequency domain amplitude of insert frequency components of optimal tool in feed direction was more reduced than that of convent- ional tool. The amplitudes of insert frequency components of optimal tool in X-and Z-direction are a little increased than those of conventional tool. As the reduction of amplitude and fluctuations of the cutting force, Optimal tool is considered that tool life and surface roughness would be improved, and stable cutting would be expected.

  • PDF

Analysis on Cutting Force of Tool in Gear Chamfering Process (기어 챔퍼링 공정에서 공구의 절삭력 해석)

  • Choi, Boo-Rim;Hwang, Kwang-Bok;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.52-62
    • /
    • 2013
  • In order to obtain the relation between the cutting force and the process parameters in the chamfering process for the gear of a gear shaft, analysis of the process was performed with a simplified model instead of considering the whole actual 3-dimensional cutting situation produced between cutting tool and gear. The model divided the actual situation into the accumulation of hundreds of 2-dimensional layers with a small thickness in the direction of the height of gear and derived cutting force at a cutting position by accumulating each cutting force calculated in a layer. With proposed method to analyze the cutting forces in the chamfering process, it was revealed that the cutting position and size were exactly searched to calculate the cutting force in each layer. The total cutting force was the highest in the corner where the cutter encountered the gear first during the relative motion between them. The cutting forces were changed in proportion to the cutting parameters such as feed rate and trajectory.

Dynamic Model in Ball End Milling of Inclined Surface (볼 엔드밀 경사면 가공의 동적 모델)

  • Kim Seung-Yoon;Kim Byung-Hee;Chu Chong-Nam;Lee Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.39-46
    • /
    • 2006
  • In this work a dynamic cutting force model in ball end milling of inclined surface is introduced. To represent the complex cutting geometry in ball end milling of inclined surface, workpiece is modeled with Z-map method and cutting edges are divided into finite cutting edge elements. As tool rotates and vibrates, a finite cutting edge element makes two triangular sub-patches. Using the number of nodes in workpiece which are in the interior of sub-patches, instant average uncut chip thickness is derived. Instant dynamic cutting forces are computed with the chip thickness and cutting coefficients. The deformation of cutting tool induced by cutting farces is also computed. With iterative computation of these procedures, a dynamic cutting force model is generated. The model is verified with several experiments.

A study on the Theoretical of Three Dimensional Cutting Force Used Energy Method (에너지 방법을 이용한 삼차원 절삭력의 이론적 여측에 관한 연구)

  • Kim, Jang-Hvung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.95-105
    • /
    • 1984
  • The purpose of this paper is to predict the cutting force, utilizing new model of double cutting edge which has normal rake angle and tool inclination angle. Changing side, back rake angle and side cutting edge angle in the new model. Three dimensional cutting force was obtained by the use of .eta. /c=i proposed by Stabler and energy method for three dimen- sional cutting force. Theoretical results has been calculated with development of optimization algorism which can be put into three dimensional theory, using the method of least square with orthogonal cutting data. IT is proved that three dimensional cutting force is to be predicted accurately only if orthogonal cutting force by equalizing theoretical result and experimental result has been calculated.

  • PDF

The Wear Prediction of $A1_{2}$$0_{3}$-TiC Series Ceramic Tool by Cutting Force Model (절삭력 모델에 의한 $A1_{2}$$0_{3}$-TiC계 세라믹 공구의 마멸 예측)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Jo, Jae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.151-157
    • /
    • 1996
  • The tool condition monitoring is one of the most important aspects to improve productivity and quality of workpiece. In this study, the wear of ceramic tool (A1$_{2}$0$_{3}$-TiC Series) cutting the hardened die material(SKD11) was investigated. Flank wear was more dominant than crater wear. Therefore the modeling of cutting force related to flank wear has been performed. The cutting force model was construct- ed by an assumption that the stress distribution on the tool face is affected by tool wear. The relationship between characteristics as cutting force and tool wear can be suggested by machining parameters depending on cutting conditions. Experiments were performed under the various cutting conditions to ensure the validity of force models. The theoretical predictions on the flank wear are approximately in good agreement with experimental results.

  • PDF